Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of high power microwave injection on tropospheric freon

Ran Mao-Yi Hu Yao-Gai Zhao Zheng-Yu Zhang Yuan-Nong

Citation:

Effect of high power microwave injection on tropospheric freon

Ran Mao-Yi, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High power microwave injection into the troposphere is a feasible approach to the decomposition of chlorofluorocarbon (CFC). However, in existing researches, there are only basic principles which lack quantitative tests. Hence, in this article we introduce the finite-difference time-domain method to quantitatively analyze the decomposition of CFC under high power pulses. We first investigate the principal chemical reactions of CFC decomposition induced by high power microwave injection and find that dissociation attachment is a dominant process of the microwave discharge decomposition of CFC. We use an empirical formula to calculate the decomposition efficiency of CFC. The result shows that 20% of the initial content of CFC molecules will be dissociated over 100 microseconds where we assume the electron number density to be 1013 cm-3. Then according to Maxwell's equations and the current density equation, we adopt the finite difference time domain method to simulate the generation process of a large number of free electrons induced by injecting the high power microwaves into the troposphere. The ionized electron generated by the high power microwave in troposphere is in favor of CFC decomposition since the electron affinity of CFC is larger than dissociation energy of CFC molecules. The simulation results indicate that the number density of electrons grows up to 1017 cm-3 exponentially with the injection time and will grow faster at higher height (10 km) or by the larger field intensity. During the pulse, the higher electron energy corresponds to a smaller dissociative attachment coefficient. Thus, most of the CFC molecules are decomposed during the electron-decay phase. During the relaxation period, the electron energy will return to the natural state within 0.01 ns. The number density of electrons decreases slower than the electron energy and it will take 1 ms to reach the natural state. From the results we can also see that the decay rates of the electron energy and number density decrease with the increase of the height. In this paper, two methods of calculating the CFC decomposition rate are utilized. One method is from the chemical reaction and the other method is based on an empirical formula which is mentioned before. It is shown that the results of these two methods present obvious consistency. The simulation results demonstrate that the CFC decomposition rate will increase with larger microwave intensity or higher frequency and can approach up to 6%. In conclusion, this study gives the quantitative analyses of the CFC decomposition induced by high power microwave injection in the troposphere for the first time.
      Corresponding author: Hu Yao-Gai, yaogaihu@whu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant NO.41375007) and the Natural Science Foundation of Hubei Province of China (Grant No.2011CDA099).
    [1]

    Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500

    [2]

    Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311

    [3]

    Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124

    [4]

    Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204

    [5]

    Kang H C 2002 J. Ind. Eng. Chem. 8 488

    [6]

    Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341

    [7]

    Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29

    [8]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]

    [9]

    Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [10]

    Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]

    [11]

    Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]

    [12]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [13]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 63 095202]

    [14]

    Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]

    [15]

    Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]

    [16]

    Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454

    [17]

    Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]

    [18]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007

    [19]

    Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543

    [20]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]

    [21]

    Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]

    [22]

    Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]

    [23]

    Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]

  • [1]

    Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500

    [2]

    Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311

    [3]

    Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124

    [4]

    Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204

    [5]

    Kang H C 2002 J. Ind. Eng. Chem. 8 488

    [6]

    Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341

    [7]

    Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29

    [8]

    Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]

    [9]

    Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238

    [10]

    Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]

    [11]

    Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]

    [12]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [13]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 63 095202]

    [14]

    Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]

    [15]

    Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]

    [16]

    Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454

    [17]

    Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]

    [18]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007

    [19]

    Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543

    [20]

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]

    [21]

    Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]

    [22]

    Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]

    [23]

    Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]

  • [1] Shu Pan-Pan, Zhao Peng-Cheng, Wang Rui. Electromagnetic particle simulation of secondary electron multipactor characteristics in inner surface of 110 GHz microwave output window. Acta Physica Sinica, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] Li Jing, Liu Yun-Quan. Relativistic free electrons based quantum physics. Acta Physica Sinica, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [3] Huang Hua, Wu Yang, Liu Zhen-Bang, Yuan Huan, He Hu, Li Le-Le, Li Zheng-Hong, Jin Xiao, Ma Hong-Ge. Review on high power microwave device with locked frequency and phase. Acta Physica Sinica, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [4] Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp. Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [5] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [6] Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong. High power microwave damage mechanism on high electron mobility transistor. Acta Physica Sinica, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [7] Wei Jin-Jin, Zhou Dong-Fang, Yu Dao-Jie, Hu Tao, Hou De-Ting, Zhang De-Wei, Lei Xue, Hu Jun-Jie. Seed electron production from O- detachment in high power microwave air breakdown. Acta Physica Sinica, 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [8] Tang Tao. Numerical validation study of high power microwave soil breakdown. Acta Physica Sinica, 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [9] Zhu Xiao-Min, Ren Xin-Cheng, Guo Li-Xin. Study on wide-band scattering from rectangular cross-section above rough land surface with exponential type distribution using FDTD. Acta Physica Sinica, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [10] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [11] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [12] Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua. High power microwave pulse compression systembased on cylindrical resonant cavity. Acta Physica Sinica, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [13] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave. Acta Physica Sinica, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [14] Lan Chao-Hui, Hu Xi-Wei, Liu Ming-Hai. Numerical simulation of microwave power absorption of large-scale surface-wave plasma source. Acta Physica Sinica, 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
    [15] Wu Yang, Xu Zhou, Xu Yong, Jin Xiao, Chang An-Bi, Li Zheng-Hong, Huang Hua, Liu Zhong, Luo Xiong, Ma Qiao-Sheng, Tang Chuan-Xiang. Experimental study on a high power microwave amplifier driven by low rf power. Acta Physica Sinica, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [16] Wang Gan-Ping, Xiang Fei, Tan Jie, Cao Shao-Yun, Luo Min, Kang Qiang, Chang An-Bi. Investigation in discharge progress of a long pulse high power microwave-driven source. Acta Physica Sinica, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [17] Li Guo-Lin, Shu Ting, Yuan Cheng-Wei, Zhang Jun, Jin Zhen-Xing, Yang Jian-Hua, Zhong Hui-Huang, Yang Jie, Wu Da-Peng. Preliminary investigation on the design and experiment of a spatial filter for dual band high power microwave. Acta Physica Sinica, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [18] Cai Li-Bing, Wang Jian-Guo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface. Acta Physica Sinica, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [19] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [20] Li Zheng-Hong, Meng Fan-Bao, Chang An-Bi, Huang Hua, Ma Qiao-Sheng. Investigation of bitron as a high power microwave oscillator. Acta Physica Sinica, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
Metrics
  • Abstract views:  5566
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2016
  • Accepted Date:  17 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map