-
High power microwave injection into the troposphere is a feasible approach to the decomposition of chlorofluorocarbon (CFC). However, in existing researches, there are only basic principles which lack quantitative tests. Hence, in this article we introduce the finite-difference time-domain method to quantitatively analyze the decomposition of CFC under high power pulses. We first investigate the principal chemical reactions of CFC decomposition induced by high power microwave injection and find that dissociation attachment is a dominant process of the microwave discharge decomposition of CFC. We use an empirical formula to calculate the decomposition efficiency of CFC. The result shows that 20% of the initial content of CFC molecules will be dissociated over 100 microseconds where we assume the electron number density to be 1013 cm-3. Then according to Maxwell's equations and the current density equation, we adopt the finite difference time domain method to simulate the generation process of a large number of free electrons induced by injecting the high power microwaves into the troposphere. The ionized electron generated by the high power microwave in troposphere is in favor of CFC decomposition since the electron affinity of CFC is larger than dissociation energy of CFC molecules. The simulation results indicate that the number density of electrons grows up to 1017 cm-3 exponentially with the injection time and will grow faster at higher height (10 km) or by the larger field intensity. During the pulse, the higher electron energy corresponds to a smaller dissociative attachment coefficient. Thus, most of the CFC molecules are decomposed during the electron-decay phase. During the relaxation period, the electron energy will return to the natural state within 0.01 ns. The number density of electrons decreases slower than the electron energy and it will take 1 ms to reach the natural state. From the results we can also see that the decay rates of the electron energy and number density decrease with the increase of the height. In this paper, two methods of calculating the CFC decomposition rate are utilized. One method is from the chemical reaction and the other method is based on an empirical formula which is mentioned before. It is shown that the results of these two methods present obvious consistency. The simulation results demonstrate that the CFC decomposition rate will increase with larger microwave intensity or higher frequency and can approach up to 6%. In conclusion, this study gives the quantitative analyses of the CFC decomposition induced by high power microwave injection in the troposphere for the first time.
-
Keywords:
- high power microwave /
- freon /
- free electron /
- finite difference time domain
[1] Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500
[2] Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311
[3] Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124
[4] Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204
[5] Kang H C 2002 J. Ind. Eng. Chem. 8 488
[6] Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341
[7] Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29
[8] Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]
[9] Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238
[10] Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]
[11] Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]
[12] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[13] Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 63 095202]
[14] Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]
[15] Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]
[16] Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454
[17] Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]
[18] Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007
[19] Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543
[20] Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]
[21] Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]
[22] Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]
[23] Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]
-
[1] Askar'yan G A, Batanov G M, Barkhudarov A É, Gritsinin S I, Korchagina E G, Kossyi I A, Silakov V P, Tarasova N M 1992 Pis'ma Zh. Eksp. Teor. Fiz. 55 500
[2] Askar'yan G A, Batanov G M, Barkhudarov A E, Gritsinin S I, Korchagina E G, Kossyi I A, Tarasova N M 1994 J. Phys. D:Appl. Phys. 27 1311
[3] Wong A Y, Sensharma D K, Tang A W, Suchannek R G, Ho D 1994 Phys. Rev. Lett. 72 3124
[4] Batanov G M, Kossyi I A, Silakov V P 2002 Plasma Phys. Rep. 28 204
[5] Kang H C 2002 J. Ind. Eng. Chem. 8 488
[6] Ricketts C L, Wallis A E, Whitehead J C, Zhang K 2004 J. Phys. Chem. A 108 8341
[7] Wallis A E, Whitehead J C, Zhang K 2007 Catal. Lett. 113 29
[8] Zhou Q H, Dong Z W 2013 Acta Phys. Sin. 62 205202 (in Chinese)[周前红, 董志伟 2013 62 205202]
[9] Jick H Y, Alvarez R A, Mayhall D J, Byrne D P, Degroot J 1986 Phys. Fluids 29 1238
[10] Cao J K, Zhou D F, Niu Z X, Shao Y, Zou W, Xing Z W 2006 High Power Laser Part. Beams 18 115 (in Chinese)[曹金坤, 周东方, 牛忠霞, 邵颖, 邹伟, 邢召伟 2006 强激光与粒子束 18 115]
[11] Zhou G Y, Zhu H G 1996 High Power Laser Part. Beams 8 485 (in Chinese)[周光镒, 朱红刚 1996 强激光与粒子束 8 485]
[12] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[13] Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese)[袁忠才, 时佳明 2014 63 095202]
[14] Tang T, Liao C, Yang D 2010 Chin. J. Radio. 25 122 (in Chinese)[唐涛, 廖成, 杨丹 2010 电波科学学报 25 122]
[15] Zhao P C, Liao C, Tang T, Gao Q M 2010 J. Chongqing Univ. Posts Telecomm. 22 431 (in Chinese)[赵朋程, 廖成, 唐涛, 高清敏 2010 重庆邮电大学学报(自然科学版) 22 431]
[16] Fehsenfeld F C, Crutzen P J, Schmeltekopf A L, Howard C J, Albritton D L, Ferguson E E, Davidson J A, Schiff H I 1976 J. Geophys. Res. Atmos. 81 4454
[17] Zhang C, Zhou D F, Rao Y P, Chen Y, Hou D T 2009 High Power Laser Part. Beams 21 719 (in Chinese)[张超, 周东方, 饶育萍, 陈勇, 侯德亭 2009 强激光与粒子束 21 719]
[18] Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 35007
[19] Tang T, Liao C, Gao Q M, Zhao P C 2010 J. Electromagn. Anal. Appl. 2 543
[20] Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p34 (in Chinese)[葛德彪, 闫玉波 2005 电磁波时域有限差分方法(西安:西安电子科技大学出版社)第34页]
[21] Hu T, Zhou D F, Li Q R, Niu Z X 2009 High Power Laser Part. Beams 21 545 (in Chinese)[胡涛, 周东方, 李庆荣, 牛忠霞 2009 强激光与粒子束 21 545]
[22] Gurevich A V (translated by Liu X M) 1986 Nonlinear Phenomena in the Ionosphere (Beijing:Science Press) pp21-42 (in Chinese)[古列维奇A V著 (刘选谋 译) 1986 电离层中的非线性现象(北京:科学出版社) 第21–42页]
[23] Xiong N L, Tang C C, Li X J 1999 Ionosphere Physics Phenomena (Wuhan:Wuhan University Press) pp311-353 (in Chinese)[熊年禄, 唐存琛, 李行健 1999 电离层物理概论(武汉:武汉大学出版社)第311–353页]
Catalog
Metrics
- Abstract views: 5566
- PDF Downloads: 160
- Cited By: 0