Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method for detecting high-speed rail surface defects by photoacoustic signal

Sun Ming-Jian Cheng Xing-Zhen Wang Yan Zhang Xin Shen Yi Feng Nai-Zhang

Citation:

Method for detecting high-speed rail surface defects by photoacoustic signal

Sun Ming-Jian, Cheng Xing-Zhen, Wang Yan, Zhang Xin, Shen Yi, Feng Nai-Zhang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Railway plays a major role in our daily life and national economy. In recent years, people payed much more attention to the safety operation of the high-speed train. In fact, the rail cracks originate from surface micro cracks will directly affect the safety of high-speed train. Therefore, it is vital to detect the rail surface micro cracks. Numerous nondestructive testing methods have been developed and applied in the detection of high speed rail cracks, such as magnetic particle testing, eddy current testing, and ultrasonic testing, etc. However, all the above conventional methods could only achieve crack information from the point of one-dimensional signal but not effective for the detection of surface micro cracks. A surface defect detection method based on photoacoustic (PA) signal from high speed rail is proposed soas to detect the surface crack more exactly and visually. Simulation and experiments are designed to validate the proposed method. Firstly, three models of high-speed rail with transverse crack, oblique crack, and scale stripping are established respectively. Meanwhile, the PA effect is simulated by finite element analysis and K-wave. Then, PA image of the rail surface is reconstructed by time inversion reconstruction algorithm, and some parameters, such as the center frequency of ultrasonic sensor and the laser power are also confirmed in further simulation. Subsequently, an experimental platform is established to collect the actual PA signal from a rail surface and to reconstruct PA images of the rail surface and shallow layer. The crack appearing in PA images are clear enough to show the receive crack information, such as sizes, propagating directions, and locations, which can be used to evaluate the rail states and decide processing scheme. It is proved that clear images of rail surface and shallow layer can be received by the detecting method of high-speed rail surface defects based on photoacoustic signal, and the surface cracks can be detected effectively.
      Corresponding author: Feng Nai-Zhang, fengnz@yeah.net
    • Funds: Progect supported by the National Natural Science Foundation of China (Grant Nos. 61201307, 61371045, 61171197), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2013132), Science and Technology Development Plan Project of Shandong Province, China (Grant No. 2015GGX103016), and the China Postdoctoral Science Foundation (Grant No. 2015M571413).
    [1]

    Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]

    [2]

    Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]

    [3]

    Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546

    [4]

    Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048

    [5]

    Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80

    [6]

    Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141

    [7]

    Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54

    [8]

    Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819

    [9]

    Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1

    [10]

    Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001

    [11]

    Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]

    [12]

    Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]

    [13]

    Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]

    [14]

    Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]

    [15]

    Kenderian S, Djordjevic B 2006 Insight 48 336

    [16]

    Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8

    [17]

    Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48

    [18]

    Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896

    [19]

    Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783

    [20]

    Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473

    [21]

    Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713

    [22]

    Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]

    [23]

    Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]

    [24]

    Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]

  • [1]

    Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]

    [2]

    Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]

    [3]

    Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546

    [4]

    Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048

    [5]

    Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80

    [6]

    Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141

    [7]

    Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54

    [8]

    Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819

    [9]

    Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1

    [10]

    Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001

    [11]

    Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]

    [12]

    Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]

    [13]

    Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]

    [14]

    Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]

    [15]

    Kenderian S, Djordjevic B 2006 Insight 48 336

    [16]

    Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8

    [17]

    Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48

    [18]

    Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896

    [19]

    Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783

    [20]

    Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473

    [21]

    Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713

    [22]

    Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]

    [23]

    Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]

    [24]

    Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]

  • [1] Hao Peng, Zhang Li-Li, Ding Ming-Ming. Finite element analysis of inertial migration of polymer vesicles in microtubule flow. Acta Physica Sinica, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [2] Zhang Zhao-Quan, Shi Peng-Peng, Gou Xiao-Fan. Analytical model of magnetic Barkhausen stress test of ferromagnetic plates. Acta Physica Sinica, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection. Acta Physica Sinica, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [4] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] Sun Ming-Jian, Liu Ting, Cheng Xing-Zhen, Chen De-Ying, Yan Feng-Gang, Feng Nai-Zhang. Nondestructive detecting method for metal material defects based on multimodal signals. Acta Physica Sinica, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [6] Peng Dong-Qing, Xie Wen-Ming, Wu Shu-Lian, Tang Jia-Ming, Li Zhi-Fang, Li Hui. Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source. Acta Physica Sinica, 2015, 64(20): 207801. doi: 10.7498/aps.64.207801
    [7] Yin Jie, Tao Chao, Liu Xiao-Jun. Multi-parameter photoacoustic imaging and its application in biomedicine. Acta Physica Sinica, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [8] Zhang Li-Guang, Qu Hui-Ming. Multiple heat sources with multi-parameter inversion of nondestructive infrared detection. Acta Physica Sinica, 2015, 64(10): 108104. doi: 10.7498/aps.64.108104
    [9] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [10] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [11] Ma Zhi-Chao, Xu Zhi-Mou, Peng Jing, Sun Tang-You, Chen Xiu-Guo, Zhao Wen-Ning, Liu Si-Si, Wu Xing-Hui, Zou Chao, Liu Shi-Yuan. Nondestructive detection of nano grating by generalized ellipsometer. Acta Physica Sinica, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [12] Zhao Huan-Yu, He Cun-Fu, Wu Bin, Wang Yue-Sheng. Experimental investigation of two-dimensional multi-point defect phononic crystals with square lattice. Acta Physica Sinica, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [13] Chen Da-Peng, Xing Chun-Fei, Zhang Zheng, Zhang Cun-Lin. Terahertz thermal wave nondestructive test. Acta Physica Sinica, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [14] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [15] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [16] Yang Si-Hua, Yin Guang-Zhi. Photoacoustic angiography for mouse brain cortex using near-infrared light. Acta Physica Sinica, 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [17] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [18] Shi Shao-Meng, Chen Rong-Chang, Xue Yan-Ling, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. X-ray microscopic imaging of low Z material wrapped by strongly absorbing medium. Acta Physica Sinica, 2008, 57(10): 6319-6328. doi: 10.7498/aps.57.6319
    [19] Xiang Liang-Zhong, Xing Da, Gu Huai-Min, Yang Di-Wu, Yang Si-Hua, Zeng Lü-Ming. Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction technique. Acta Physica Sinica, 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [20] Du Qi-Zhen, Yang Hui-Zhu. Finite-element methods for viscoelastic and azimuthally anisotropic media. Acta Physica Sinica, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
Metrics
  • Abstract views:  8306
  • PDF Downloads:  406
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2015
  • Accepted Date:  28 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map