搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多参量光声成像及其在生物医学领域的应用

殷杰 陶超 刘晓峻

引用本文:
Citation:

多参量光声成像及其在生物医学领域的应用

殷杰, 陶超, 刘晓峻

Multi-parameter photoacoustic imaging and its application in biomedicine

Yin Jie, Tao Chao, Liu Xiao-Jun
PDF
导出引用
  • 光声成像兼具声学成像和光学成像两者的优点, 因而成为近十年来发展最迅速的生物医学成像技术之一. 本文介绍了光声成像的特点及其相对于广泛应用的光学成像技术和声学成像技术的优点; 其次, 解释了光声成像的成像原理, 在此基础上介绍了光声断层成像和光声显微镜这两种典型的光声成像方案, 并介绍了它们的技术特点; 然后, 介绍了光声成像对生物组织的生化特性、组织力学特性、血液流速分布、温度分布参数、微结构特性等多信息参量的提取能力, 及其在生物系统的结构成像、功能成像、代谢成像、分子成像、基因成像等多领域的应用; 最后, 展望了光声成像在生物医学领域的应用潜力并讨论了其局限性.
    Photoacoustic imaging is a hybrid imaging technique based on the photoacoustic effect. As a non-invasive and non-ionizing modality, photoacoustic imaging takes the both merits of the conventional acoustic imaging and optical imaging. Firstly, the contrast of photoacoustic imaging primarily depends on the optical absorption. The unique optical spectra of atoms and molecules makes optical methods to be a widely used modality to probe the molecular and chemical information of biological tissue. Therefore, photoacoustic imaging has its inherent advantage in high-contrast functional and physiological imaging of biological tissue, as well as the optical imaging method. Secondly, photoacoustic imaging has the high spatial resolution in deep tissue in comparison with the pure optical imaging method. Since the strongly optical scattering in biological tissue, pure optical imaging method is difficult to obtain the high-resolution image in the tissue deeper than ~1 mm. Whereas, acoustic wave suffers much less from scattering than optical wave, the acoustic scattering coefficient is about 2-3 orders of magnitude less than the optical scattering coefficient. Photoacoustic imaging can achieve a fine resolution in deep tissue, which equivalent to 1/200 of the imaging depth. Thirdly, non-ionizing radiation used for photoacoustic imaging is much safer than X-ray. Moreover, the low-temperature rises make photoacoustic imaging be safely used in live tissue. A laser-induced temperature rise of 1 mK yields an initial pressure of ~800 Pa in soft tissue. Such a sound pressure level has reached the sensitivities of typical ultrasonic transducers. Fourthly, photoacoustic imaging has the ability of extracting multiple contrasts, including biochemical parameter, biomechanical parameter, blood velocity distribution, tissue temperature, and microstructure information. Photoacoustic imaging can capture more specific and reliable information about the tissue structure, function, metabolism, molecule, and gene. As a result, photoacoustic imaging has become one of the fastest growing biomedical imaging techniques in the past decade.#br#In this review, we will explain photoacoustic effect and the principle of photoacoustic imaging. Then, we introduce the two classical photoacoustic imaging schemes, including photoacoustic tomography and photoacoustic microscopy. Their main specifications, such as resolution, are also preflents. We review the ability of photoacoustic imaging in extracting multiple contrasts and discuss their biomedicine applications. In addition, we also introduce the remarkable breakthroughs in super-resolution photoacoustic imaging. Finally, we look the further development and the limitations of photoacoustic imaging.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921504)、国家自然科学基金(批准号: 11422439, 11274171, 11274167)和教育部博士点基金(20120091110001)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11422439, 11274171, 11274167), and SRFDP (Grant No. 20120091110001).
    [1]

    Wang L V, Hu S 2012 Science 335 1458

    [2]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801

    [3]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204

    [4]

    Wang L V 2009 Nat. Photonics 3 503

    [5]

    Li C, Wang L V 2009 Phys. Med. Biol. 54 R59

    [6]

    Lou C, Yang S, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101

    [7]

    Culver J P, Ntziachristos V, Holboke M J, Yodh A G 2001 Opt. Lett. 26 701

    [8]

    Savage N 2013 Nature 502 S90

    [9]

    Xu M, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Calasso I G, Craig W, Diebold G J 2001 Phys. Rev. Lett. 86 3550

    [11]

    Diebold G J, Khan M I, Park S M 1990 Science 250 101

    [12]

    Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803

    [13]

    Xu M H, Wang L V 2005 Phys. Rev. E 71 016706

    [14]

    Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G 2007 Math. Mod. Meth. Appl. S 17 635

    [15]

    Köstli K P, Beard P C 2003 Appl. Optics 42 1899

    [16]

    Wu D, Tao C, Liu X J 2013 Opt. Express 21 18061

    [17]

    Wu D, Tao C, Liu X J 2011 J. Appl. Phys. 109 084702

    [18]

    Zhang H F, Maslov K, Stoica G, Wang L V 2006 Nat. Biotechnol. 24 848

    [19]

    Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V 2012 Nat. Med. 18 1297

    [20]

    Yao D K, Maslov K, Shung K K, Zhou Q, Wang L V 2010 Opt. Lett. 35 4139

    [21]

    Hu S, Maslov K, Wang L V 2011 Opt. Lett. 36 1134

    [22]

    Xu Z, Zhu Q, Wang L V 2011 J. Biomed. Opt. 16 066020

    [23]

    Xi L, Grobmyer S R, Wu L, Chen R M, Zhou G Y, Gutwein L G, Sun J J, Liao W J, Zhou Q F, Xie H K, Jiang H B 2012 Opt. Express 20 8726

    [24]

    Wu N, Ye S H, Ren Q S, Li C H 2014 Opt. Lett. 39 2451

    [25]

    Song W, Zheng W, Liu R M, Lin R Q, Huang H T, Gong X J, Yang S S, Zhang R, Song L 2014 Biomed. Opt. Express 5 4235

    [26]

    Huang G J, Si Z, Yang S H, Li C, Xing D 2012 J. Mater. Chem. 22 22575

    [27]

    Ku G, Wang X D, Xie X Y, Stoica G, Wang L V 2005 Appl. Optics 44 770

    [28]

    Favazza C P, Cornelius L A, Wang L V 2011 J. Biomed. Opt. 16 026004

    [29]

    Gao G D, Yang S H, Xing D 2011 Opt. Lett. 36 3341

    [30]

    Zhao Y, Yang S H, Chen C G, Xing D 2014 Opt. Lett. 39 2565

    [31]

    Sethuraman S, Aglyamov S R, Smalling R W, Emelianov S Y 2008 Ultrasound Med. Biol. 34 299

    [32]

    Yao J J, Ke H X, Tai S, Zhou Y, Wang L V 2013 Opt. Lett. 38 5228

    [33]

    Wang B, Emelianov S 2011 Biomed. Opt. Express 2 3072

    [34]

    Yao J J, Maslov K, Shi Y F, Taber L, Wang L V 2010 Opt. Lett. 35 1419

    [35]

    Song W, Liu W Z, Zhang H F 2013 Appl. Phys. Lett. 102 203501

    [36]

    Strohm E M, Berndl E S L, Kolios M C 2013 Biophys. J. 105 59

    [37]

    Kumon R E, Deng C X, Wang X 2011 Ultrasound Med. Biol. 37 834

    [38]

    Saha R K, Kolios M C 2011 J. Acoust. Soc. Am. 129 2935

    [39]

    Yang Y Q, Wang S H, Tao C, Wang X D, Liu X J 2012 Appl. Phys. Lett. 101 034105

    [40]

    Xu G, Dar I A, Tao C, Liu X J, Deng C X, Wang X D 2012 Appl. Phys. Lett. 101 221102

    [41]

    Wang S H, Tao C, Wang X D, Liu X J 2013 Appl. Phys. Lett. 102 114102

    [42]

    Xu G, Meng Z X, Lin J D, Yuan J, Carson P L, Joshi B, Wang X D 2014 Radiology 271 248

    [43]

    Rao B, Maslov K, Danielli A, Chen R M, Shung K K, Zhou Q F, Wang L V 2011 Opt. Lett. 36 1137

    [44]

    Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P 2014 Small 10135

    [45]

    Yao J Y, Wang L D, Li C Y, Zhang C, Wang L V 2014 Phys. Rev. Lett. 112 014302

    [46]

    Jin X, Wang L V 2006 Phys. Med. Biol. 51 6437

    [47]

    Jose J, Willemink R G H, Steenbergen W, Slump C H, Leeuwen T G, Manohar S 2012 Med. Phys. 39 7262

    [48]

    Yoon C H, Kang J, Han S H, Yoo Y M, Song T K, Chang J H 2012 Opt. Express 20 3082

    [49]

    Huang C, Wang K, Nie L M, Wang L V 2013 IEEE T. Med. Imaging 32 1097

    [50]

    Zhang C, Wang Y Y 2008 Phys. Med. Biol. 53 4971

    [51]

    Wu D, Wang X D, Tao C, Liu X J 2011 Appl. Phys. Lett. 99 244102

  • [1]

    Wang L V, Hu S 2012 Science 335 1458

    [2]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801

    [3]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204

    [4]

    Wang L V 2009 Nat. Photonics 3 503

    [5]

    Li C, Wang L V 2009 Phys. Med. Biol. 54 R59

    [6]

    Lou C, Yang S, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101

    [7]

    Culver J P, Ntziachristos V, Holboke M J, Yodh A G 2001 Opt. Lett. 26 701

    [8]

    Savage N 2013 Nature 502 S90

    [9]

    Xu M, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Calasso I G, Craig W, Diebold G J 2001 Phys. Rev. Lett. 86 3550

    [11]

    Diebold G J, Khan M I, Park S M 1990 Science 250 101

    [12]

    Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803

    [13]

    Xu M H, Wang L V 2005 Phys. Rev. E 71 016706

    [14]

    Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G 2007 Math. Mod. Meth. Appl. S 17 635

    [15]

    Köstli K P, Beard P C 2003 Appl. Optics 42 1899

    [16]

    Wu D, Tao C, Liu X J 2013 Opt. Express 21 18061

    [17]

    Wu D, Tao C, Liu X J 2011 J. Appl. Phys. 109 084702

    [18]

    Zhang H F, Maslov K, Stoica G, Wang L V 2006 Nat. Biotechnol. 24 848

    [19]

    Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V 2012 Nat. Med. 18 1297

    [20]

    Yao D K, Maslov K, Shung K K, Zhou Q, Wang L V 2010 Opt. Lett. 35 4139

    [21]

    Hu S, Maslov K, Wang L V 2011 Opt. Lett. 36 1134

    [22]

    Xu Z, Zhu Q, Wang L V 2011 J. Biomed. Opt. 16 066020

    [23]

    Xi L, Grobmyer S R, Wu L, Chen R M, Zhou G Y, Gutwein L G, Sun J J, Liao W J, Zhou Q F, Xie H K, Jiang H B 2012 Opt. Express 20 8726

    [24]

    Wu N, Ye S H, Ren Q S, Li C H 2014 Opt. Lett. 39 2451

    [25]

    Song W, Zheng W, Liu R M, Lin R Q, Huang H T, Gong X J, Yang S S, Zhang R, Song L 2014 Biomed. Opt. Express 5 4235

    [26]

    Huang G J, Si Z, Yang S H, Li C, Xing D 2012 J. Mater. Chem. 22 22575

    [27]

    Ku G, Wang X D, Xie X Y, Stoica G, Wang L V 2005 Appl. Optics 44 770

    [28]

    Favazza C P, Cornelius L A, Wang L V 2011 J. Biomed. Opt. 16 026004

    [29]

    Gao G D, Yang S H, Xing D 2011 Opt. Lett. 36 3341

    [30]

    Zhao Y, Yang S H, Chen C G, Xing D 2014 Opt. Lett. 39 2565

    [31]

    Sethuraman S, Aglyamov S R, Smalling R W, Emelianov S Y 2008 Ultrasound Med. Biol. 34 299

    [32]

    Yao J J, Ke H X, Tai S, Zhou Y, Wang L V 2013 Opt. Lett. 38 5228

    [33]

    Wang B, Emelianov S 2011 Biomed. Opt. Express 2 3072

    [34]

    Yao J J, Maslov K, Shi Y F, Taber L, Wang L V 2010 Opt. Lett. 35 1419

    [35]

    Song W, Liu W Z, Zhang H F 2013 Appl. Phys. Lett. 102 203501

    [36]

    Strohm E M, Berndl E S L, Kolios M C 2013 Biophys. J. 105 59

    [37]

    Kumon R E, Deng C X, Wang X 2011 Ultrasound Med. Biol. 37 834

    [38]

    Saha R K, Kolios M C 2011 J. Acoust. Soc. Am. 129 2935

    [39]

    Yang Y Q, Wang S H, Tao C, Wang X D, Liu X J 2012 Appl. Phys. Lett. 101 034105

    [40]

    Xu G, Dar I A, Tao C, Liu X J, Deng C X, Wang X D 2012 Appl. Phys. Lett. 101 221102

    [41]

    Wang S H, Tao C, Wang X D, Liu X J 2013 Appl. Phys. Lett. 102 114102

    [42]

    Xu G, Meng Z X, Lin J D, Yuan J, Carson P L, Joshi B, Wang X D 2014 Radiology 271 248

    [43]

    Rao B, Maslov K, Danielli A, Chen R M, Shung K K, Zhou Q F, Wang L V 2011 Opt. Lett. 36 1137

    [44]

    Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P 2014 Small 10135

    [45]

    Yao J Y, Wang L D, Li C Y, Zhang C, Wang L V 2014 Phys. Rev. Lett. 112 014302

    [46]

    Jin X, Wang L V 2006 Phys. Med. Biol. 51 6437

    [47]

    Jose J, Willemink R G H, Steenbergen W, Slump C H, Leeuwen T G, Manohar S 2012 Med. Phys. 39 7262

    [48]

    Yoon C H, Kang J, Han S H, Yoo Y M, Song T K, Chang J H 2012 Opt. Express 20 3082

    [49]

    Huang C, Wang K, Nie L M, Wang L V 2013 IEEE T. Med. Imaging 32 1097

    [50]

    Zhang C, Wang Y Y 2008 Phys. Med. Biol. 53 4971

    [51]

    Wu D, Wang X D, Tao C, Liu X J 2011 Appl. Phys. Lett. 99 244102

  • [1] 张嘉禧, 李凌峰, 钟洪文, 肖嘉莹. 用于深层组织分子成像的小型化光声/超声内窥成像探头.  , 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [2] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展.  , 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [4] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像.  , 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [5] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2021, (): . doi: 10.7498/aps.70.20211394
    [6] 孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章. 基于光声信号的高铁钢轨表面缺陷检测方法.  , 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [7] 彭东青, 谢文明, 吴淑莲, 唐嘉铭, 李志芳, 李晖. 基于柱弥散光源体内辐照的前列腺扫描光声成像仿体实验.  , 2015, 64(20): 207801. doi: 10.7498/aps.64.207801
    [8] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [9] 李正华, 李翔. 交变力磁力显微镜动态成像技术的研究.  , 2014, 63(17): 178503. doi: 10.7498/aps.63.178503
    [10] 焦阳, 简小华, 向永嘉, 崔崤峣. 光声信号的双谱分析方法研究.  , 2013, 62(8): 087803. doi: 10.7498/aps.62.087803
    [11] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究.  , 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [12] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [13] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像.  , 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [14] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术.  , 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [15] 向良忠, 邢 达, 谷怀民, 杨迪武, 杨思华, 曾吕明. 改进的同步迭代算法在光声血管成像中的应用.  , 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [16] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像.  , 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [17] 张 航. 基于δ声波场的生物组织光学断层成像研究.  , 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [18] 唐志列, 梁瑞生, 常鸿森. 双光子和多光子共焦显微镜的成像理论.  , 2000, 49(6): 1076-1080. doi: 10.7498/aps.49.1076
    [19] 陈冠英, 历树忠. 一种新的体视假彩色显微镜成像机理分析.  , 1999, 48(1): 23-30. doi: 10.7498/aps.48.23
    [20] 张淑仪, 俞超, 苗永智, 唐正言, 高敦堂. 扫描光声显微镜.  , 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
计量
  • 文章访问数:  7623
  • PDF下载量:  938
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-03-02
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map