搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柱弥散光源体内辐照的前列腺扫描光声成像仿体实验

彭东青 谢文明 吴淑莲 唐嘉铭 李志芳 李晖

引用本文:
Citation:

基于柱弥散光源体内辐照的前列腺扫描光声成像仿体实验

彭东青, 谢文明, 吴淑莲, 唐嘉铭, 李志芳, 李晖

Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source

Peng Dong-Qing, Xie Wen-Ming, Wu Shu-Lian, Tang Jia-Ming, Li Zhi-Fang, Li Hui
PDF
导出引用
  • 光声成像技术是一种非常有前景的前列腺早期检测与成像的新技术. 在现有前列腺光声成像技术中, 通常采用的腺体外光源辐照方式由于受外围组织的影响, 容易减弱深部前列腺组织的光能量吸收, 导致辐照范围减小, 引起光声成像深度不足, 难以实现无损前列腺癌的检测. 本文基于前列腺组织的结构特征, 依据一种以柱状弥散光纤在尿道对前列腺实施光辐照、并利用外置于直肠内的长焦区聚焦式超声换能器检测光声信号的前列腺光声扫描成像技术, 构建了光声成像实验系统, 开展了仿体实验. 测试结果表明, 系统能够实现样品中吸收体的定位和成像, 结合柱弥散光源体内辐照可使成像深度提高, 同时侧向成像范围也较大. 初步结果表明, 借助柱弥散光源进行体内光辐照的光声信号新激发方式结合长焦区超声探头在前列腺癌早期无创诊断上具有潜在的应用前景.
    Photoacoustic imaging has recently emerged as a promising imaging modality for prostate cancer. As ausual light illumination model in the previous studies, the external light illumination is difficult to obtain an accurate reconstructed photoacoustic image. It suffers a great deal of light absorption attenuation by the surrounding scattering tissue and cannot colletct sufficient ultrasound signals for image reconstruction. Some particular methods are required to be considered in the photoacoustic imaging technique for examining prostate, such as a light delivery to prostate with sufficient penetrating depth and minimal invasiveness. According to the structural characteristic of prostate tissue, a photoacoustic imaging system is built by using a novel technique for prostate in this paper. In our photoacoustic imaging system, a cylindrical diffusing source with a 2-cm-long diffuser tip is used for an internal light irradiation through a urethra, and a focused transducer with a 3.5 MHz central frequency and 30.3 mm extended focal zone is located in the rectum for scanning the photoacoustic signal. Phantom experimental imaging is carried out. In the experiment, a transverse resolution of 2.21 mm and an axial resolution of 0.39 mm are obtained. The results demonstrate that the system could achieve the accurate imaging position of the absorber in the tissue sample. Because of the symmetrical emitting of the cylindrical diffusing light source and a relatively better lateral uniformity of light absorption around the light source through the internal irradiation model via urethra, light absorption of the upper side of the light source is almost the same as that of the lower side. Therefore the lengthways and lateral imaging ranges can be improved. In addition, the laser energy is allowed to be increased appropriately to obtain a further imaging result without worrying about heat damages to normal tissues, for the light absorption is less around the cylindrical diffusing light source. In conclusion, the preliminary studies show that the new technique, where the internal light irradiation is implemented by using a cylindrical diffusing source and a focused transducer with extended focal zone, has a potential application in the early noninvasive diagnosis of prostate cancer.
    • 基金项目: 国家自然科学基金(批准号: 61178089, 81201124)、福建省科技计划重点项目(批准号: 2011Y0019)和福建省教育厅科技计划(批准号: JA14189)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178089, 81201124), the Fujian Provincial Key Program of Science and Technology, China (Grant No. 2011Y0019), and the Science Research Project of the Education Bureau of Fujian Province, China (Grant No. JA14189).
    [1]

    Siegel R, Naishadham D, Jemal A 2013 CA-Cancer J. Clin. 63 11

    [2]

    Siegel R, Ma J M, Zou Z H, Jemal A 2014 CA-Cancer J. Clin. 64 9

    [3]

    Li M, Zhang S W, Ma J H, Chen W Q, Na Y Q 2009 Chin. J. Urol. 30 368 (in Chinese) [李鸣, 张思维, 马建辉, 陈万青, 那彦群 2009 中华泌尿外科杂志 30 368]

    [4]

    Andreev V G, Ponomaryov A E, Henrichs P M, Motamedi M, Orihuela E, Eyzaguirre E, Oraevsky A A 2003 Proc. SPIE 4960 45

    [5]

    Wijkstra H, Wink M H, de la Rosette J J M C H 2004 World J. Urol. 22 346

    [6]

    Robert R, Mukesh H 2006 Hematol. Oncol. Clin. North. Am. 20 811

    [7]

    Turkbey B, Pinto P A, Choyke P L 2009 Nat. Rev. Urol. 6 191

    [8]

    Wang L V 2004 Dis. Markers 19 123

    [9]

    Xu M H, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Yuan Y, Yang S H 2012 Chin. Phys. B 21 054211

    [11]

    Wang S H, Tao C, Liu X J 2013 Chin. Phys. B 22 074303

    [12]

    Oraevsky A A, Andreev V G, Karabutov A A, Fleming D R, Gatalica Z, Singh H, Esenaliev R O 1999 Proc. SPIE 3597 352

    [13]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801 (in Chinese) [曾志平, 谢文明, 张建英, 李莉, 陈树强, 李志芳, 李晖 2012 61 097801]

    [14]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204 (in Chinese) [陈炳章, 易航, 杨金戈, 迟子惠, 荣健, 胡兵, 蒋华北 2014 63 084204]

    [15]

    Lao Y Q, Xing D, Yang S H, Xiang L Z 2008 Phys. Med. Biol. 53 4203

    [16]

    Spirou G M, Vitkin I A, Wilson B C, Whelan W M, Henrichs P M, Mehta K, Miller T, Yee A, Meador J, Oraevsky A A 2004 Proc. SPIE 5320 44

    [17]

    Yaseen M A, Ermilov S A, Brecht H P, Su R, Conjusteau A, Fronheiser M, Bell B A, Motamedi M, Oraevsky A A 2010 J. Biomed. Opt. 15 021310

    [18]

    Wang X D, Roberts W W, Carson P L, Wood D P, Fowlkes J B 2010 Biomed. Opt. Express 1 1117

    [19]

    Bauer D R, Olafsson R, Montilla L G, Witte R S 2011 J. Biomed. Opt. 16 026012

    [20]

    Dogra V S, Chinni B K, Valluru K S, Joseph J V, Ghazi A, Yao J L, Evans K, Messing E M, Rao N A 2013 J. Clin. Imaging Sci. 3 41

    [21]

    El-Gohary S H, Metwally M K, Eom S, Jeon S H, Byun K M, Kim T S 2014 Biomed. Eng. Lett. 4 250

    [22]

    Agarwal A, Huang S W, Donnell M O, Day K C, Day M, Kotov N, Ashkenazi S 2007 J. Appl. Phys. 102 064701

    [23]

    Valluru K, Chinni B, Bhatt S, Dogra V, Rao N, Akata D 2010 IEEE International Conference on Imaging Systems and Techniques Thessaloniki, Greece, July 1-2, 2010 p121

    [24]

    Harrison T, Zemp R J 2011 J. Biomed. Opt. 16 080502

    [25]

    Su J L, Bouchard R R, Karpiouk A B, Hazle J D, Emelianov S Y 2011 Biomed. Opt. Express 2 2243

    [26]

    Kuo N, Kang H J, Song D Y, Kang J U, Boctor E M 2012 J. Biomed. Opt. 17 066005

    [27]

    Bell M A L, Kuo N, Song D Y, Boctor E M 2013 Biomed. Opt. Express 4 1964

    [28]

    Bell M A L, Kuo N P, Song D Y, Kang J U, Boctor E M 2014 J. Biomed. Opt. 19 126011

    [29]

    Xie W M, Li L, Li Z F, Li H 2012 Proc. SPIE 8553 85532V

    [30]

    Germer C T, Albrecht D, Isbert C, Ritz J, Roggan A, Buhr H J 1999 Lasers Med. Sci. 14 32

    [31]

    Vesselov L, Whittington W, Lilge L 2005 Appl. Opt. 44 2754

    [32]

    Liang X, Wang K K H, Zhu T C 2013 Phys. Med. Biol. 58 3461

  • [1]

    Siegel R, Naishadham D, Jemal A 2013 CA-Cancer J. Clin. 63 11

    [2]

    Siegel R, Ma J M, Zou Z H, Jemal A 2014 CA-Cancer J. Clin. 64 9

    [3]

    Li M, Zhang S W, Ma J H, Chen W Q, Na Y Q 2009 Chin. J. Urol. 30 368 (in Chinese) [李鸣, 张思维, 马建辉, 陈万青, 那彦群 2009 中华泌尿外科杂志 30 368]

    [4]

    Andreev V G, Ponomaryov A E, Henrichs P M, Motamedi M, Orihuela E, Eyzaguirre E, Oraevsky A A 2003 Proc. SPIE 4960 45

    [5]

    Wijkstra H, Wink M H, de la Rosette J J M C H 2004 World J. Urol. 22 346

    [6]

    Robert R, Mukesh H 2006 Hematol. Oncol. Clin. North. Am. 20 811

    [7]

    Turkbey B, Pinto P A, Choyke P L 2009 Nat. Rev. Urol. 6 191

    [8]

    Wang L V 2004 Dis. Markers 19 123

    [9]

    Xu M H, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Yuan Y, Yang S H 2012 Chin. Phys. B 21 054211

    [11]

    Wang S H, Tao C, Liu X J 2013 Chin. Phys. B 22 074303

    [12]

    Oraevsky A A, Andreev V G, Karabutov A A, Fleming D R, Gatalica Z, Singh H, Esenaliev R O 1999 Proc. SPIE 3597 352

    [13]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801 (in Chinese) [曾志平, 谢文明, 张建英, 李莉, 陈树强, 李志芳, 李晖 2012 61 097801]

    [14]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204 (in Chinese) [陈炳章, 易航, 杨金戈, 迟子惠, 荣健, 胡兵, 蒋华北 2014 63 084204]

    [15]

    Lao Y Q, Xing D, Yang S H, Xiang L Z 2008 Phys. Med. Biol. 53 4203

    [16]

    Spirou G M, Vitkin I A, Wilson B C, Whelan W M, Henrichs P M, Mehta K, Miller T, Yee A, Meador J, Oraevsky A A 2004 Proc. SPIE 5320 44

    [17]

    Yaseen M A, Ermilov S A, Brecht H P, Su R, Conjusteau A, Fronheiser M, Bell B A, Motamedi M, Oraevsky A A 2010 J. Biomed. Opt. 15 021310

    [18]

    Wang X D, Roberts W W, Carson P L, Wood D P, Fowlkes J B 2010 Biomed. Opt. Express 1 1117

    [19]

    Bauer D R, Olafsson R, Montilla L G, Witte R S 2011 J. Biomed. Opt. 16 026012

    [20]

    Dogra V S, Chinni B K, Valluru K S, Joseph J V, Ghazi A, Yao J L, Evans K, Messing E M, Rao N A 2013 J. Clin. Imaging Sci. 3 41

    [21]

    El-Gohary S H, Metwally M K, Eom S, Jeon S H, Byun K M, Kim T S 2014 Biomed. Eng. Lett. 4 250

    [22]

    Agarwal A, Huang S W, Donnell M O, Day K C, Day M, Kotov N, Ashkenazi S 2007 J. Appl. Phys. 102 064701

    [23]

    Valluru K, Chinni B, Bhatt S, Dogra V, Rao N, Akata D 2010 IEEE International Conference on Imaging Systems and Techniques Thessaloniki, Greece, July 1-2, 2010 p121

    [24]

    Harrison T, Zemp R J 2011 J. Biomed. Opt. 16 080502

    [25]

    Su J L, Bouchard R R, Karpiouk A B, Hazle J D, Emelianov S Y 2011 Biomed. Opt. Express 2 2243

    [26]

    Kuo N, Kang H J, Song D Y, Kang J U, Boctor E M 2012 J. Biomed. Opt. 17 066005

    [27]

    Bell M A L, Kuo N, Song D Y, Boctor E M 2013 Biomed. Opt. Express 4 1964

    [28]

    Bell M A L, Kuo N P, Song D Y, Kang J U, Boctor E M 2014 J. Biomed. Opt. 19 126011

    [29]

    Xie W M, Li L, Li Z F, Li H 2012 Proc. SPIE 8553 85532V

    [30]

    Germer C T, Albrecht D, Isbert C, Ritz J, Roggan A, Buhr H J 1999 Lasers Med. Sci. 14 32

    [31]

    Vesselov L, Whittington W, Lilge L 2005 Appl. Opt. 44 2754

    [32]

    Liang X, Wang K K H, Zhu T C 2013 Phys. Med. Biol. 58 3461

  • [1] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展.  , 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [3] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术.  , 2021, (): . doi: 10.7498/aps.70.20211394
    [4] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用.  , 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [5] 徐静阳, 方少波, 周婧. 利用光谱和质谱成像技术实现指纹痕量检测.  , 2019, 68(6): 068701. doi: 10.7498/aps.68.20190174
    [6] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术.  , 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [7] 孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章. 基于光声信号的高铁钢轨表面缺陷检测方法.  , 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [8] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用.  , 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [9] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [10] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究.  , 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [11] 许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉. 快速多极边界元法用于扩散光学断层成像研究.  , 2013, 62(10): 104204. doi: 10.7498/aps.62.104204
    [12] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究.  , 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [13] 焦阳, 简小华, 向永嘉, 崔崤峣. 光声信号的双谱分析方法研究.  , 2013, 62(8): 087803. doi: 10.7498/aps.62.087803
    [14] 曾志平, 谢文明, 张建英, 李莉, 陈树强, 李志芳, 李晖. 基于聚焦光声层析技术的甲状腺离体组织成像.  , 2012, 61(9): 097801. doi: 10.7498/aps.61.097801
    [15] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究.  , 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [16] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [17] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像.  , 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [18] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术.  , 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [19] 向良忠, 邢 达, 谷怀民, 杨迪武, 杨思华, 曾吕明. 改进的同步迭代算法在光声血管成像中的应用.  , 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [20] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像.  , 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
计量
  • 文章访问数:  6016
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-06-26
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map