-
本文提出了一种基于科赫(Koch)分形结构的新型超材料双频吸收器,其由二阶科赫分形阵列、介质层和金属背板三部分组成. 通过利用分形结构的空间填充性,其单元尺寸在相同吸收频率下相对于具有正方形谐振结构的传统吸收器有近17.5%的尺寸缩减. 与传统实现多频工作的组合法、层叠法不同,该型吸收器的双频特性来源于科赫分形曲线在电磁波激励下呈现出的两种不同的谐振模式. 而且由于结构上具有旋转对称性,该型吸收器对入射波的极化方向不敏感,在横电波、横磁波大角度入射时仍能保持较高的吸收率. 文中采用等效介质理论对该型吸收器进行了分析,测量结果与仿真结果取得了较好的一致性.In this paper we present a novel dual-band metamaterial absorber (MA), which is composed of a periodically arranged 2nd order Koch curve array and a metal ground separated by a dielectric spacer. By employing the fractal characteristic of space-filling, more compact unit cell with a size reduction of 17.5% has been achieved as compared with the conventional square-shaped MA. The dual-band operation is not originated from the hybrid or stacked methods as reported before, but from the two distinct resonance modes of the 2nd order Koch curves induced by the incident electromagnetic wave, and can be realized within a single unit cell. Due to its rotationally symmetric pattern, the absorptivity of the above presented MA is insensitive to the polarization of the incident waves and can perform well in a wide range of incident angles. The effective medium theory has been employed to investigate the underlying physical mechanism of the fractal MA, and good agreements between simulation and experimental results have been achieved.
-
Keywords:
- metamaterials /
- absorber /
- fractal
[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[2] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor J, Dalvit D AR, Chen H T 2013 Science 340 1304
[4] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[5] Tao H., Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D. Appl. Phys. 43 225102
[6] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M, Cummer S A 2008 Appl. Phys. Lett. 93 191110
[7] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
[8] Chen H T 2012 Opt. Express 20 7165
[9] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
[10] Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W, Feng R S 2008 Appl. Phys. Lett. 92 101106
[11] Wang G Q, Shen J L, Jia Y 2007 J. Appl. Phys. 102 013106
[12] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801
[13] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[14] Du Q J, Liu J S, Wang K J, Yi X N, Yang H W 2011 Chinese. Phys. Lett. 28 014201
[15] Li H, Yuan L H, Zh B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[16] Kollatou T M, Dimitriadis A I, Assimonis S D, Kantartzis N V, Antonopoulos C S 2013 Prog. Electromagn. Res. 136 579
[17] Ye Q W, Liu Y, Lin H, Li M H, Yang H L 2012 Appl. Phys. A 107 155
[18] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102
[19] Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, Lee Y P 2013 Opt. Express 21 9691
[20] Shen X P Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese)[沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]
[21] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese)[刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[22] Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516
[23] Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641
[24] Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagn. Res. 108 37
[25] Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T Jun 2011 Opt. Express 19 15221
[26] Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103
[27] Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D. Appl. Phys. 46 195103
[28] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
[29] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401
[30] Kuznetsov S A, Paulish A G, Gelfand A V, Lazorskiy P A, Fedorinin V N 2012 Prog. Electromagn. Res. 122 93
[31] O'Hara J F, Smirnova E, Azad A K, Chen H T, Taylor A J 2007 Act. Passive Electron. Compon. 2007
[32] Smith D R, Vier D C, Koschny T h, Soukoulis C M 2005 Phys. Rev. E 71 036617
-
[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[2] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor J, Dalvit D AR, Chen H T 2013 Science 340 1304
[4] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[5] Tao H., Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D. Appl. Phys. 43 225102
[6] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M, Cummer S A 2008 Appl. Phys. Lett. 93 191110
[7] Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154
[8] Chen H T 2012 Opt. Express 20 7165
[9] Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403
[10] Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W, Feng R S 2008 Appl. Phys. Lett. 92 101106
[11] Wang G Q, Shen J L, Jia Y 2007 J. Appl. Phys. 102 013106
[12] Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801
[13] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
[14] Du Q J, Liu J S, Wang K J, Yi X N, Yang H W 2011 Chinese. Phys. Lett. 28 014201
[15] Li H, Yuan L H, Zh B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909
[16] Kollatou T M, Dimitriadis A I, Assimonis S D, Kantartzis N V, Antonopoulos C S 2013 Prog. Electromagn. Res. 136 579
[17] Ye Q W, Liu Y, Lin H, Li M H, Yang H L 2012 Appl. Phys. A 107 155
[18] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102
[19] Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, Lee Y P 2013 Opt. Express 21 9691
[20] Shen X P Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese)[沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]
[21] Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese)[刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 62 134102]
[22] Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516
[23] Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641
[24] Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagn. Res. 108 37
[25] Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T Jun 2011 Opt. Express 19 15221
[26] Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103
[27] Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D. Appl. Phys. 46 195103
[28] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401
[29] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401
[30] Kuznetsov S A, Paulish A G, Gelfand A V, Lazorskiy P A, Fedorinin V N 2012 Prog. Electromagn. Res. 122 93
[31] O'Hara J F, Smirnova E, Azad A K, Chen H T, Taylor A J 2007 Act. Passive Electron. Compon. 2007
[32] Smith D R, Vier D C, Koschny T h, Soukoulis C M 2005 Phys. Rev. E 71 036617
计量
- 文章访问数: 6807
- PDF下载量: 971
- 被引次数: 0