Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Angle dependent inverse spin Hall effect in NiFe/Pt thin film

Han Fang-Bin Zhang Wen-Xu Peng Bin Zhang Wan-Li

Citation:

Angle dependent inverse spin Hall effect in NiFe/Pt thin film

Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In NiFe/Pt bilayer, when spin current originating from the magnetization procession of NiFe is inject into the adjacent Pt layer under ferromagnetic resonance (FMR), the direct current (DC) voltage VISHE generated by inverse spin Hall effect (ISHE) will be added to the voltage VSRE generated by spin rectification effect (SRE), therefore the measured voltage in experiment is the sum of VISHE and VSRE. It is crucial to separate these contributions, which has been often overlooked before, in order to make a reasonable comparison of the ISHE among different materials. The voltages having symmetric (Lorentz type) and anti-symmetric (dispersive type) components both vary with the static magnetic field strength. However, they have different static magnetic field angle dependences according to our theoretical analysis. In order to distinguish the contribution of ISHE from that of SRE, in this paper, we employ a method, in which the voltage across the sample is measured when the static magnetic field is applied to different directions, to analyze the voltage by varying magnetic field angle in a range from 0° to 360° in steps of 10°, thereby separating the VISHE. The separation is carried out by fitting the angle dependent symmetric and anti-symmetric curves to different theoretical formulas of ISHE and SRE. The voltages of the two different contributions together with the phase angle of the microwave are obtained. At the same time, the FMR line width and the resonant field can be read out. The results show that the ferromagnetic resonance line width in NiFe(20 nm)/Pt(10 nm) sample is larger than that in NiFe(20 nm) sample due to the injection of spin current from NiFe to Pt in the bi-layer sample. We notice that in the curves of voltage vs. static magnetic field, the Lorentz symmetry components of the voltage from the bi-layer sample weight more than those from the single-layer sample. This is explained as a result of the existence of the ISHE in the bi-layer sample, where the spins are pumped from the magnetic layer to the adjacent nonmagnetic layer. The spin pumping effect does not show up in the single-layer sample. There are a large portion of symmetric components in the double layer sample, which is attributed to the ISHE. Although the voltage caused by the SRE is smaller than that by the ISHE, the SRE voltage cannot be ignored. Our work is crucial to understanding the spin-related effects in ferromagnetic/nonmagnetic metal material and provides an improved analysis method to study the spin pumping and the ISHE.
      Corresponding author: Zhang Wen-Xu, xwzhang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471095).
    [1]

    Žutić I, Dery H 2011 Nat. Mater. 10 647

    [2]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913

    [3]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [4]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201 (in Chinese) [王日兴,贺鹏斌,肖运昌,李建英 2015 64 137201]

    [5]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [7]

    Slachter A, Bakker F L, Adam J P, van Wees B J 2010 Nat. Phys. 6 879

    [8]

    Adachi H, Uchida K, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501

    [9]

    Wu H, Wan C H, Yuan Z H, Zhang X, Jiang J, Zhang Q T, Wen Z C, Han X F 2015 Phys. Rev. B 92 04404

    [10]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502

    [11]

    Wu Y, Zhao Y L, Xiong Q, Xu X G, Sun Y, Zhang S Q, Jiang Y 2014 Chin. Phys. B 23 018503

    [12]

    Gong S J, Duan C G 2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 64 187103]

    [13]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [14]

    Hahn C, De Loubens G, Viret M, Klein O, Naletov V V, Youssef J B 2013 Phys. Rev. Lett. 111 217204

    [15]

    Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M, Hillebrands B 2015 Phys. Rev. B 91 134407

    [16]

    Zhang W, Jungfleisch M B, Jiang W J, Sklenar J, Fradin F Y, Pearson J E, Ketterson J B, Hoffmann A 2015 J. Appl. Phys. 117 172610

    [17]

    Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J, Sun N X 2015 Phys. Rev. B 91 214416

    [18]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408

    [19]

    Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T, Shiraishi M 2013 Phys. Rev. Lett. 110 127201

    [20]

    Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M, Shiraishi M 2015 Phys. Rev. Lett. 114 196602

    [21]

    Ando K, Saitoh E 2012 Nat. Commun. 3 629

    [22]

    Ando Y, Ichiba K, Yamada S, Shikoh E, Shinjo T, Hamaya K, Shiraishi M 2013 Phys. Rev. B 88 140406

    [23]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423

    [24]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [25]

    Mukherjee S S, Deorani P, Kwon J H, Yang H 2012 Phys. Rev. B 85 094416

    [26]

    Soh W T, Peng B, Chai G Z, Ong C K 2014 Rev. Sci. Instrum. 85 026109

    [27]

    Soh W T, Peng B, Ong C K 2014 J. Phys. D: Appl. Phys. 47 285001

    [28]

    Gui Y S, Bai L H, Hu C M 2013 Sci. China 56 124

    [29]

    Kittel C 1947 Phys. Rev. 71 270

    [30]

    Chen L, Ikeda S, Matsukura F, Ohno H 2014 Appl. Phys. Express 7 013002

    [31]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S E, Hoffmann A 2010 Phys. Rev. Lett. 104 046601

  • [1]

    Žutić I, Dery H 2011 Nat. Mater. 10 647

    [2]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913

    [3]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [4]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201 (in Chinese) [王日兴,贺鹏斌,肖运昌,李建英 2015 64 137201]

    [5]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [7]

    Slachter A, Bakker F L, Adam J P, van Wees B J 2010 Nat. Phys. 6 879

    [8]

    Adachi H, Uchida K, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501

    [9]

    Wu H, Wan C H, Yuan Z H, Zhang X, Jiang J, Zhang Q T, Wen Z C, Han X F 2015 Phys. Rev. B 92 04404

    [10]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502

    [11]

    Wu Y, Zhao Y L, Xiong Q, Xu X G, Sun Y, Zhang S Q, Jiang Y 2014 Chin. Phys. B 23 018503

    [12]

    Gong S J, Duan C G 2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 64 187103]

    [13]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172

    [14]

    Hahn C, De Loubens G, Viret M, Klein O, Naletov V V, Youssef J B 2013 Phys. Rev. Lett. 111 217204

    [15]

    Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M, Hillebrands B 2015 Phys. Rev. B 91 134407

    [16]

    Zhang W, Jungfleisch M B, Jiang W J, Sklenar J, Fradin F Y, Pearson J E, Ketterson J B, Hoffmann A 2015 J. Appl. Phys. 117 172610

    [17]

    Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J, Sun N X 2015 Phys. Rev. B 91 214416

    [18]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408

    [19]

    Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T, Shiraishi M 2013 Phys. Rev. Lett. 110 127201

    [20]

    Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M, Shiraishi M 2015 Phys. Rev. Lett. 114 196602

    [21]

    Ando K, Saitoh E 2012 Nat. Commun. 3 629

    [22]

    Ando Y, Ichiba K, Yamada S, Shikoh E, Shinjo T, Hamaya K, Shiraishi M 2013 Phys. Rev. B 88 140406

    [23]

    Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 Phys. Rev. B 85 214423

    [24]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [25]

    Mukherjee S S, Deorani P, Kwon J H, Yang H 2012 Phys. Rev. B 85 094416

    [26]

    Soh W T, Peng B, Chai G Z, Ong C K 2014 Rev. Sci. Instrum. 85 026109

    [27]

    Soh W T, Peng B, Ong C K 2014 J. Phys. D: Appl. Phys. 47 285001

    [28]

    Gui Y S, Bai L H, Hu C M 2013 Sci. China 56 124

    [29]

    Kittel C 1947 Phys. Rev. 71 270

    [30]

    Chen L, Ikeda S, Matsukura F, Ohno H 2014 Appl. Phys. Express 7 013002

    [31]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S E, Hoffmann A 2010 Phys. Rev. Lett. 104 046601

  • [1] Wang Ning, Huang Feng, Chen Ying, Zhu Guo-Feng, Su Hao-Bin, Guo Cui-Xia, Wang Xiang-Feng. Magnetic-field-induced spin reorientation in TmFeO3 single crystals. Acta Physica Sinica, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] Cheng Hong-Yang, Ma Qian-Ru, Xu Hao-Ran, Zhang Hui-Ping, Jin Zuan-Ming, He Wei, Peng Yan. Terahertz emission characterization of silicon based ferromagnetic heterostructures. Acta Physica Sinica, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [3] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [4] Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan. Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect. Acta Physica Sinica, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [5] Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li. Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet. Acta Physica Sinica, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [6] He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu. Inverse spin Hall effect in Nb doped SrTiO3. Acta Physica Sinica, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [7] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [8] Tu Kuan, Han Man-Gui. Micromagnetics simulation on the microwave permeability of magnetic porous nano-flakes. Acta Physica Sinica, 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [9] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [10] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [11] Gu Wen-Juan, Pan Jing, Hu Jing-Guo. Ferromagnetic resonance phenomenon of magnetic thin film under a perpendicular field. Acta Physica Sinica, 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [12] Gu Wen-Juan, Pan Jing, Du Wei, Hu Jing-Guo. Measurement of magnetic anisotropyby ferromagnetic resonance. Acta Physica Sinica, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [13] Tang Nai-Yun. Spin polarized current transport and charge polarization effect in ferromagnetic GaMnN resonant tunneling diode. Acta Physica Sinica, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [14] Rong Jian-Hong, Yun Guo-Hong. Ferromagnetic resonance in ferromagnetic bilayer films under the stress anisotropy. Acta Physica Sinica, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [15] Pan Jing, Zhou Lan, Tao Yong-Chun, Hu Jing-Guo. Spin waves in ferromagnetic/antiferrmagnetic bilayers under the stress field. Acta Physica Sinica, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [16] Pan Jing, Ma Mei, Zhou Lan, Hu Jing-Guo. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [17] Yuan Shu-Juan, Zhou Shi-Ming, Lu Mu. Ferromagnetic resonance study of Ni nanowire arrays. Acta Physica Sinica, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [18] Du Jun, Sun Liang, Sheng Wen-Ting, You Biao, Lu Mu, Hu An, M. M. Corte-Real, J. Q. Xiao. In-plane ferromagnetic resonance in nano-composite Fe-R-O(R=Hf Nd Dy)films. Acta Physica Sinica, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [19] Hou Bi-Hui, Liu Feng-Yan, Guo Hui-Qun. Study on the magnetic anisotropy of the (Fe1-xCox)84Zr3.5Nb 3.5B8Cu1 nano-crystallite ribbon with the metho d of magnetic resonance. Acta Physica Sinica, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] PU FU-CHO, CHENG CHIN-CHI. INFLUENCE OF THE SCATTERING BETWEEN SPIN WAVES ON FERROMAGNETIC RESONANCE ABSORPTION. Acta Physica Sinica, 1962, 18(2): 81-90. doi: 10.7498/aps.18.81
Metrics
  • Abstract views:  7312
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2015
  • Accepted Date:  06 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map