Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of high-pressure physical properties of α-Ti2Zr

Zhang Pin-Liang Gong Zi-Zheng Ji Guang-Fu Liu Song

Citation:

First-principles study of high-pressure physical properties of α-Ti2Zr

Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The structure, elastic constant, Debey temperature and electron distribution of α-Ti2Zr under high pressure are presented by using first-principles pseudopotential method based on density functional theory in this paper. The calculated structural parameters at zero pressure are in agreement with experimental values. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We obtain the bulk modulus, Young’s modulus and Poisson’s ratio for α-Ti2Zr. The G and B at zero pressure are 101.2 and 35.6 GPa, respectively. The G/B value is relatively small and decreases with pressure increasing, showing that the α-Ti2Zr is rather ductile. The Debye temperature Θ=321.7 K is obtained by the average sound velocity based on elastic constants. We investigate anisotropies of the compressional wave and two shear waves. The acoustic velocities are obtained from elastic constants by solving Christoffel equation. The results indicate the strong anisotropy for α-Ti2Zr. Moreover, the pressure dependence of s→d electron transfer indicates that β-Ti2Zr will occur under high pressure.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB731600) and the Specialized Research Project for the Protection Against Space Debris of China (Grant Nos. KJSP06209, KJSP06210).
    [1]

    Vohra Y K, Spencer P T 2001 Phys. Rev. Lett. 86 3068

    [2]

    Murray J L 1981 Bulletin of Alloys Phase Diagrams 2 197

    [3]

    Chatterji D, Hepworth M T, Hruska S J 1971 Metall. Trans. 2 1271

    [4]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2007 Phys. Rew. B 76 144107

    [5]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 Solid State Commun. 146 105

    [6]

    Mei Z G, Shang S L, Wang Y, Liu Z K 2009 Phys. Rev. B 79 134102

    [7]

    Errandonea D, Meng Y, Somayazulu M, Häusermann D 2005 Physica B 355 116

    [8]

    Kerley G I 2003 Sandia Report, Sand 2003-3785

    [9]

    Hao Y J, Zhu J, Zhang L, Qu J Y, Ren H S 2010 Solid State Commun. 12 1473

    [10]

    Wang B T, Zhang P, Liu H Y, Li W D, Zhang P 2011 J. Appl. Phys. 109 063514

    [11]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 J. Phys.: Condens. Mat. 20 235230

    [12]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2008 J. Appl. Phys. 104 076102

    [13]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [14]

    Zhang S H, Zhu Y, Zhang X Y, Zhang S L, Qi L, Liu R P 2010 Comput. Mat. Sci. 50 179

    [15]

    Bashkin I O, Fedotov V K, Nefedova M V, Tissen V G, Ponyatovsky E G, Schiwek A, Holzapfel W B 2003 Phys. Rev. B 68 054401

    [16]

    Wang B T, Li W D, Zhang P 2012 J. Nucl. Mater. 420 501

    [17]

    Dolukhanyan S K, Aleksanyan A G, Ter-Galstyan O P, Shekhtman V S, Sakharov M K, Abrosimova G E 2007 Russ. J. Phys. Chem. B 1 563

    [18]

    Shekhtman V S, Dolukhanyan S K, Aleksanyan A G, Mayilyan D G, Ter-Galstyan O P, Sakharov M K, Khasanov S S 2010 Int. J. Self-Propag. High-Temp Synth. 19 40

    [19]

    Swainson I P, Dolukanyan S K, Aleksanyan A G, Shekhtman V S, Mayilyan D G, Yonkeu A L 2010 Can. J. Phys. 88 741

    [20]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 0744

    [21]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [22]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 61 023103]

    [23]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 61 186501]

    [24]

    Chen Z J 2012 Acta Phys. Sin. 61 177104 (in Chinese) [陈中钧 2012 61 177104]

    [25]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press)

    [30]

    Watt J P, Peselnick L 1980 J. Appl. Phys. 51 1525

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [32]

    Long R, Dai Y, Jin H, Huang B B 2008 Res. Lett. Phys. 2008 293517

    [33]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [34]

    Antonov V, Iordanova I 2009 AIP Conf. Proc. 1203 1149

    [35]

    Accelrys Software Inc. 2010 Materials Studio Release Notes (Release 5.5) (Scan Diego: Accelrys Software Inc.)

    [36]

    Born M 1940 Proc. Cambridge Philos. Soc. 36 160

    [37]

    Sin’ko G V, Smirnov N A 2002 J. Phys.: Condens. Mat. 14 6989

    [38]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Changsha: National University of Defense Technology Press) p321(in Chinese) [汤文辉, 张若棋 1999物态方程理论及计算概论 (长沙: 国防科技大学出版社) 第321页]

    [39]

    Pugh S F 1954 Philos. Mag. 45 823

    [40]

    Auld M A 1973 Acoustic Fields and Waves in Solids (Vol. I) (New York: Wiley)

    [41]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [42]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Clarendon: Oxford)

    [43]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [44]

    Schreiber E, Anderson O L, Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)

    [45]

    Skriver H L 1985 Phys. Rev. B 31 909

    [46]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [47]

    Vohra Y K, Sikka S K, Holzapfel W B 1983 J. Phys. F: Met. Phys. 13 L107

    [48]

    Zhang P L, Gong Z Z, Ji G F 2012 Proceedings of 20th International Conference on Composites Engineering Beijing, China, July 22-28, 2012

  • [1]

    Vohra Y K, Spencer P T 2001 Phys. Rev. Lett. 86 3068

    [2]

    Murray J L 1981 Bulletin of Alloys Phase Diagrams 2 197

    [3]

    Chatterji D, Hepworth M T, Hruska S J 1971 Metall. Trans. 2 1271

    [4]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2007 Phys. Rew. B 76 144107

    [5]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 Solid State Commun. 146 105

    [6]

    Mei Z G, Shang S L, Wang Y, Liu Z K 2009 Phys. Rev. B 79 134102

    [7]

    Errandonea D, Meng Y, Somayazulu M, Häusermann D 2005 Physica B 355 116

    [8]

    Kerley G I 2003 Sandia Report, Sand 2003-3785

    [9]

    Hao Y J, Zhu J, Zhang L, Qu J Y, Ren H S 2010 Solid State Commun. 12 1473

    [10]

    Wang B T, Zhang P, Liu H Y, Li W D, Zhang P 2011 J. Appl. Phys. 109 063514

    [11]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 J. Phys.: Condens. Mat. 20 235230

    [12]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2008 J. Appl. Phys. 104 076102

    [13]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [14]

    Zhang S H, Zhu Y, Zhang X Y, Zhang S L, Qi L, Liu R P 2010 Comput. Mat. Sci. 50 179

    [15]

    Bashkin I O, Fedotov V K, Nefedova M V, Tissen V G, Ponyatovsky E G, Schiwek A, Holzapfel W B 2003 Phys. Rev. B 68 054401

    [16]

    Wang B T, Li W D, Zhang P 2012 J. Nucl. Mater. 420 501

    [17]

    Dolukhanyan S K, Aleksanyan A G, Ter-Galstyan O P, Shekhtman V S, Sakharov M K, Abrosimova G E 2007 Russ. J. Phys. Chem. B 1 563

    [18]

    Shekhtman V S, Dolukhanyan S K, Aleksanyan A G, Mayilyan D G, Ter-Galstyan O P, Sakharov M K, Khasanov S S 2010 Int. J. Self-Propag. High-Temp Synth. 19 40

    [19]

    Swainson I P, Dolukanyan S K, Aleksanyan A G, Shekhtman V S, Mayilyan D G, Yonkeu A L 2010 Can. J. Phys. 88 741

    [20]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 0744

    [21]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [22]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 61 023103]

    [23]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 61 186501]

    [24]

    Chen Z J 2012 Acta Phys. Sin. 61 177104 (in Chinese) [陈中钧 2012 61 177104]

    [25]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press)

    [30]

    Watt J P, Peselnick L 1980 J. Appl. Phys. 51 1525

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [32]

    Long R, Dai Y, Jin H, Huang B B 2008 Res. Lett. Phys. 2008 293517

    [33]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [34]

    Antonov V, Iordanova I 2009 AIP Conf. Proc. 1203 1149

    [35]

    Accelrys Software Inc. 2010 Materials Studio Release Notes (Release 5.5) (Scan Diego: Accelrys Software Inc.)

    [36]

    Born M 1940 Proc. Cambridge Philos. Soc. 36 160

    [37]

    Sin’ko G V, Smirnov N A 2002 J. Phys.: Condens. Mat. 14 6989

    [38]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Changsha: National University of Defense Technology Press) p321(in Chinese) [汤文辉, 张若棋 1999物态方程理论及计算概论 (长沙: 国防科技大学出版社) 第321页]

    [39]

    Pugh S F 1954 Philos. Mag. 45 823

    [40]

    Auld M A 1973 Acoustic Fields and Waves in Solids (Vol. I) (New York: Wiley)

    [41]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [42]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Clarendon: Oxford)

    [43]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [44]

    Schreiber E, Anderson O L, Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)

    [45]

    Skriver H L 1985 Phys. Rev. B 31 909

    [46]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [47]

    Vohra Y K, Sikka S K, Holzapfel W B 1983 J. Phys. F: Met. Phys. 13 L107

    [48]

    Zhang P L, Gong Z Z, Ji G F 2012 Proceedings of 20th International Conference on Composites Engineering Beijing, China, July 22-28, 2012

  • [1] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] Tian Cheng, Lan Jian-Xiong, Wang Cang-Long, Zhai Peng-Fei, Liu Jie. First-principles study of phase transition of BaF 2 under high pressue. Acta Physica Sinica, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [3] Phase transition of BaF2 under high pressue studied by a first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211163
    [4] Shi Xu-Han, Li Hai-Yan, Yao Zhen, Liu Bing-Bing. First-principles study of Ca5N4 at high pressure. Acta Physica Sinica, 2020, 69(6): 067101. doi: 10.7498/aps.69.20191808
    [5] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain boundary electrical characteristics for rutile TiO2 under pressure. Acta Physica Sinica, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [6] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [8] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei. Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations. Acta Physica Sinica, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [10] Hou Qing-Yu, Zhao Chun-Wang. A first-principle study of the effect of W-doping on physical properties of anatase TiO2. Acta Physica Sinica, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [11] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [14] Wang Hai-Yan, Li Chang-Yun, Gao Jie, Hu Qian-Ku, Mi Guo-Fa. First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure. Acta Physica Sinica, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [15] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [16] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [17] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [18] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [19] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [20] Liang Yong-Cheng, Guo Wan-Lin, Fang Zhong. First principles studies of low-compressibility of transition-metal compounds OsB2 and OsO2. Acta Physica Sinica, 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
Metrics
  • Abstract views:  7880
  • PDF Downloads:  709
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2012
  • Accepted Date:  29 October 2012
  • Published Online:  05 February 2013

/

返回文章
返回
Baidu
map