-
Absolutely secure communication should be implemented only through the ‘one-time pad' proposed by Shannon, requires that physical random numbers with rates matched with the associated communication systems be used as secret keys. With the wide application of the WDM technology in optical communication, the single channel rate of the current digital communication system has exceeded 10 Gb/s and developed towards 100 Gb/s. To ensure the absolute security of such a large capacity communication, a large number of real-time, and secure random numbers are needed.#br#Secure random numbers are commonly produced through utilizing physical random phenomena, called physical random number generators. However, conventional physical random number generators are limited by the low bandwidth of the applied entropy sources such as thermal noise, photon-counting and chaotic electrical circuits, and thus have typical low bit rates of the order of Mb/s.#br#In recent years, chaotic lasers attracted wide attention due to their generation of secure, reliable and high-speed random number sequences, and so due to their coherent merits such as high bandwidth, large amplitude fluctuation and ease of integration. There have been lots of schemes based on laser chaos for high-speed random number generation, but most of them execute the random number extractions from the associated laser chaos in the electrical domain and thus their generation rates are faced with the well-known ‘electrical bottleneck'. On the other hand, all-optical random number generation (AO-RNG) methods are all signal processes in the optical domain, so they can efficiently overcome this rate limitation and have a great potential in generating ultrafast random numbers of several dozens or hundreds of Gb/s. However, there is no experimental report on its realization of AO-RNG. One of the obstacles in the way for the AO-RNG achievement is to implement the fast and real-time all-optical sampling of the entropy signals (i.e., laser chaos).#br#In this paper, we present a principal experimental demonstration of the feasibility in the all-optical sampling of the chaotic light signal through constructing a TOAD-based all-optical sampler with a polarization-independent semiconductor optical amplifier (SOA). Specifically, we experimentally generate chaotic laser signals using an optical feedback semiconductor laser and finally complete a 5 GSa/s real-time and high-fidelity all-optical sampling of the chaotic laser with a bandwidth of 6.4 GHz. Further experimental results show that whether the optical sampling period is proportional to the external cavity feedback time or not has a great effect on the weak periodic suppression of the chaotic signal: only when both of them are out of proportion, can the weak periodicity of the original chaotic signal be effectively eliminated; and this is favorable for the generation of high-quality physical random numbers. To the best of our knowledge, it is the first time to realize all-optical sampling of chaotic signal in experiments.
-
Keywords:
- chaotic laser /
- random numbers /
- optical sampling /
- terahertz optical asymmetric demultiplexer
[1] Shannon C E 1949 Bell Syst. Tech. J. 28 656
[2] Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]
[3] Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]
[4] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[5] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069
[6] Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409
[7] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]
[8] Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]
[9] Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]
[10] Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]
[11] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728
[12] Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452
[13] Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102
[14] Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763
[15] Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910
[16] Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042
[17] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[18] Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829
[19] Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886
[20] Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360
[21] Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297
[22] Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587
[23] Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012
[24] Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566
[25] Jolly A, Granier C 2008 Opt. Commun. 281 3861
-
[1] Shannon C E 1949 Bell Syst. Tech. J. 28 656
[2] Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]
[3] Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]
[4] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[5] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069
[6] Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409
[7] Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]
[8] Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]
[9] Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]
[10] Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]
[11] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728
[12] Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452
[13] Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102
[14] Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763
[15] Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910
[16] Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042
[17] Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603
[18] Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829
[19] Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886
[20] Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360
[21] Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297
[22] Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587
[23] Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012
[24] Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566
[25] Jolly A, Granier C 2008 Opt. Commun. 281 3861
Catalog
Metrics
- Abstract views: 6482
- PDF Downloads: 273
- Cited By: 0