Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on real-time optical sampling of chaotic laser for all-optical physical random number generator

Li Pu Jiang Lei Sun Yuan-Yuan Zhang Jian-Guo Wang Yun-Cai

Citation:

Study on real-time optical sampling of chaotic laser for all-optical physical random number generator

Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Absolutely secure communication should be implemented only through the ‘one-time pad' proposed by Shannon, requires that physical random numbers with rates matched with the associated communication systems be used as secret keys. With the wide application of the WDM technology in optical communication, the single channel rate of the current digital communication system has exceeded 10 Gb/s and developed towards 100 Gb/s. To ensure the absolute security of such a large capacity communication, a large number of real-time, and secure random numbers are needed.#br#Secure random numbers are commonly produced through utilizing physical random phenomena, called physical random number generators. However, conventional physical random number generators are limited by the low bandwidth of the applied entropy sources such as thermal noise, photon-counting and chaotic electrical circuits, and thus have typical low bit rates of the order of Mb/s.#br#In recent years, chaotic lasers attracted wide attention due to their generation of secure, reliable and high-speed random number sequences, and so due to their coherent merits such as high bandwidth, large amplitude fluctuation and ease of integration. There have been lots of schemes based on laser chaos for high-speed random number generation, but most of them execute the random number extractions from the associated laser chaos in the electrical domain and thus their generation rates are faced with the well-known ‘electrical bottleneck'. On the other hand, all-optical random number generation (AO-RNG) methods are all signal processes in the optical domain, so they can efficiently overcome this rate limitation and have a great potential in generating ultrafast random numbers of several dozens or hundreds of Gb/s. However, there is no experimental report on its realization of AO-RNG. One of the obstacles in the way for the AO-RNG achievement is to implement the fast and real-time all-optical sampling of the entropy signals (i.e., laser chaos).#br#In this paper, we present a principal experimental demonstration of the feasibility in the all-optical sampling of the chaotic light signal through constructing a TOAD-based all-optical sampler with a polarization-independent semiconductor optical amplifier (SOA). Specifically, we experimentally generate chaotic laser signals using an optical feedback semiconductor laser and finally complete a 5 GSa/s real-time and high-fidelity all-optical sampling of the chaotic laser with a bandwidth of 6.4 GHz. Further experimental results show that whether the optical sampling period is proportional to the external cavity feedback time or not has a great effect on the weak periodic suppression of the chaotic signal: only when both of them are out of proportion, can the weak periodicity of the original chaotic signal be effectively eliminated; and this is favorable for the generation of high-quality physical random numbers. To the best of our knowledge, it is the first time to realize all-optical sampling of chaotic signal in experiments.
      Corresponding author: Wang Yun-Cai, wangyc@tyut.edu.cn
    • Funds: Project supported by the Special Fund For Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61205142, 51404165), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021088).
    [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]

    [3]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]

    [4]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [5]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [6]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [7]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]

    [8]

    Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]

    [9]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [10]

    Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [13]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [14]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [15]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [16]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [18]

    Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886

    [20]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [21]

    Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297

    [22]

    Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [25]

    Jolly A, Granier C 2008 Opt. Commun. 281 3861

  • [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]

    [3]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]

    [4]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [5]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [6]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [7]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]

    [8]

    Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]

    [9]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [10]

    Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [13]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [14]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [15]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [16]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [18]

    Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886

    [20]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [21]

    Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297

    [22]

    Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [25]

    Jolly A, Granier C 2008 Opt. Commun. 281 3861

  • [1] Liu Yuan, Yuan Ji-Yang, Zhou Xin-Yu, Gu Shuang-Quan, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. Fast physical random bit generation of wideband flat chaos signal based on filter feedback. Acta Physica Sinica, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [2] Wang Ya-Hui, Zhao Le, Hu Xin-Xin, Guo Yang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Gao Shao-Hua, Zhang Ming-Jiang. High-accuracy dual-slope-assisted chaotic Brillouin fiber dynamic strain measurement. Acta Physica Sinica, 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [3] Liu Qi, Li Pu, Kai Chao, Hu Chun-Qiang, Cai Qiang, Zhang Jian-Guo, Xu Bing-Jie. Short-time prediction of chaotic laser using time-delayed photonic reservoir computing. Acta Physica Sinica, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [4] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [5] Li Kun-Ying, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Liu Yi-Ming, Xu Bing-Jie, Wang Yun-Cai. Flat chaos generated by optical feedback multi-mode laser with filter. Acta Physica Sinica, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [6] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] Wang Long-Sheng, Zhao Tong, Wang Da-Ming, Wu Dan-Yu, Zhou Lei, Wu Jin, Liu Xin-Yu, Wang An-Bang. 14-Gb/s physical random numbers generated in real time by using multi-bit quantization of chaotic laser. Acta Physica Sinica, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [8] Han Tao, Liu Xiang-Lian, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Wang Yun-Cai. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser. Acta Physica Sinica, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [9] Zhao Dong-Liang, Li Pu, Liu Xiang-Lian, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Wang Yun-Cai. Online real-time 7 Gbit/s physical random number generation utilizing chaotic laser pulses. Acta Physica Sinica, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [10] Sun Yuan-Yuan, Li Pu, Guo Yan-Qiang, Guo Xiao-Min, Liu Xiang-Lian, Zhang Jian-Guo, Sang Lu-Xiao, Wang Yun-Cai. Chaotic laser-based ultrafast multi-bit physical random number generation without post-process. Acta Physica Sinica, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [11] Yang Hai-Bo, Wu Zheng-Mao, Tang Xi, Wu Jia-Gui, Xia Guang-Qiong. Influence of feedback strength on the characteristics of the random number sequence extracted from an external-cavity feedback semiconductor laser. Acta Physica Sinica, 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [12] Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming. Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling. Acta Physica Sinica, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [13] Jiang Lei, Li Pu, Zhang Jian-Zhong, Sun Yuan-Yuan, Hu Bing, Wang Yun-Cai. Experimental study on a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer. Acta Physica Sinica, 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [14] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [15] Liu Liu, Zheng Jian-Yu, Zhang Ming-Jiang, Meng Li-Na, Zhang Zhao-Xia, Wang Yun-Cai. Photonic generation and transmission of chaotic ultra wideband signals. Acta Physica Sinica, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [16] Xiao Bao-Jin, Hou Jia-Yin, Zhang Jian-Zhong, Xue Lu-Gang, Wang Yun-Cai. The effect of the relaxation oscillation frequency of chaotic semiconductor laser on the rate of random sequence. Acta Physica Sinica, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [17] Tang Xi, Wu Jia-Gui, Xia Guang-Qiong, Wu Zheng-Mao. 17.5 Gbit/s random bit generation using chaotic output signal of mutually coupled semiconductor lasers. Acta Physica Sinica, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [18] Meng Li-Na, Zhang Ming-Jiang, Zheng Jian-Yu, Zhang Zhao-Xia, Wang Yun-Cai. Chaotic ultra-wideband microwave signal generation utilizing an optical injection chaotic laser diode. Acta Physica Sinica, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [19] Chen Sha-Sha, Zhang Jian-Zhong, Yang Ling-Zhen, Liang Jun-Sheng, Wang Yun-Cai. One Gbit/s random bit generation based on chaotic laser. Acta Physica Sinica, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [20] Feng MingMing, Qin XiaoLin, Zhou ChunYuan, Xiong Li, Ding LiangEn. Quantum random number generator based on polarization. Acta Physica Sinica, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
Metrics
  • Abstract views:  6482
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2015
  • Accepted Date:  13 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map