-
线性光采样是一种测量基于先进调制码型的高速光信号的有效手段, 而被动锁模光纤激光器是其实施所需的关键组件. 本文在介绍线性光采样工作原理的基础上, 首次分析得到被动锁模光纤激光器重复频率与待测信号光线宽的约束关系, 对于正交相移键控(QPSK)信号, 当信号光线宽与采样光脉冲重复频率的比值小于1.5×10-3 时, 高速信号的相位噪声对线性光采样带来的损伤可以忽略不计. 利用95.984 MHz重复频率的被动锁模光纤激光器对线宽为100 kHz速率为28 Gbaud的QPSK信号开展相关实验, 通过标准数字相干接收算法可以得到与传统高速示波器相同的星座图, 理论分析与实验结果完全符合. 这一研究结果有助于线性光采样用被动锁模光纤激光器的优化设计.Optical fiber communication systems are going to adopt the use of advanced modulation formats. It is thus important to develop measurement techniques and solutions capable of quantifying such signals. Linear optical sampling is an effective technique to characterize the quality of an advanced modulation format for high-speed optical signal with high fidelity, while the passively mode-locked fiber laser is an enabling module to implement the linear optical sampling. In this paper, we obtain a trade-off relationship between the repetition rate of passively mode-locked fiber laser and the linewidth of high-speed signal under test, after the introduction of operation principle for linear optical sampling. It is found that, for the quadrature phase shift keying (QPSK) signal, when the ratio of the linewidth of the signal under test to the repetition rate of passively mode-locked fiber laser is less than 1.5×10-3, the linear optical sampling-induced impairments can be ignored when there occurs phase noise. Therefore, the phase estimation can be successfully made by using the Viterbi-Viterbi algorithm applied to the block of samples corresponding to the modulation format phase states. Next, we use an optical sampling pulse with a repetition rate of 95.984 MHz, and carry out the optical linear sampling to a 28 Gbaud QPSK signal with a linewidth of 100 kHz. The error vector magnitude (EVM) has long been a commonly used parameter for quantifying the quality of advanced modulation signals. Using the standard coherent detection algorithm, we can successfully recover the constellation with the error vector magnitude (EVM) error less than 1%. Theoretical investigations agree well with the experimental characterization. Such a conclusion is helpful to optimize the design of passively mode-locked fiber laser for optical sampling application.
-
Keywords:
- optical sampling /
- coherent detection /
- passively mode-locked fiber laser /
- digital signal processing
[1] Buchali F, Schuh K, Schmalen L, Idler W, Lach E, Leven A 2013 Optical Fiber Communication Conference Los Angeles, March 19-21, 2013 OTh4E. 3
[2] Ke J H, Gao Y, Cartledge J C 2014 Opt. Express 22 71
[3] Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L, Chandrashekhar S, Draving S, Grove M, Rush K 2013 Optical Fiber Communication Conference Los Angeles, September 23-26, 2013 PDP5A. 5
[4] Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, UmbachA, Margraf M, Stephan J, Draving S, Grove M, Rush K 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 PD2. D. 3
[5] Sköld M, Raybon G, Adamiecki A L, WinzerP J, Sunnerud H, Westlund M, Konczykowska A, Jorge F, Dupuy J, Buhl L, Andrekson P 2013 Photon. Technol. Lett. 25 504
[6] Sköld M, Westlund M, Sunnerud H, Andrekson P 2009 J. Lightw. Technol. 27 3662
[7] Sköld M, Sunnerud H, Westlund M, Andrekson P 2011 European Conference and Exposition on Optical Communications Geneva, September 19-21, 2011 Th. 13. B. 3
[8] Zhang Jianguo, Liu Yuan shan 2011 Acta Photonica Sinica 40 487 (in Chinese) [张建国, 刘元山 2011 光子学报 40 487]
[9] Sunnerud H, Skold M, Westlund M, Andrekson P 2012 J. Lightw. Technol. 30 3747
[10] Eliasson H, Johannisson P, Sunnerud H, Westlund M, Karlsson M, Andrekson P 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 Tu. 3. C. 2
[11] Okamoto T, Ito F 2014 J. Lightw. Technol. 32 3119
[12] Fermann M E, Hartl I 2009 J. Sel. Topics Quantum Electron. 15 191
[13] Dong X Z, Yu Z H, Tian J R, Li Y L, Kou Z Y, Hu M T, Song Y R 2014 Acta Phys. Sin. 63 034202 (in Chinese) [董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉 2014 63 034202]
[14] Westlund M, Sunnerud H, Karlsson M, Andrekson P 2005 J. Lightw. Technol. 23 1088
[15] Westlund M, Sunnerud H, Karlsson M, Andrekson P 2003 Optical Fiber Communication Conference Atlanta, March 25-28, 2003 WP6
[16] Dorrer C, Kilper D C, Stuart H R, Raybon G, Raymer M G 2003 Photon. Technol. Lett. 15 1746
[17] Dorrer C, Doerr C R, Kang I, Ryf R, Leuthold J, Winzer P J 2005 J. Lightw. Technol. 23 178
[18] Dorrer C 2006 J. Lightw. Technol. 24 313
[19] Seimetz M 2008 Optical Fiber Communication Conference San Diego, February 26-28, 2008 OTuM2
[20] ViterbiA 1983 Transactions on Information Theory 29 543
[21] JiangK, Fu S N, Shum P, Lin C 2010 Photon. Technol. Lett. 22 754
[22] Wang Q Q, Chen T, Zhang B, Li M, Lu Y, Chen K P 2013 Appl. Phys. Lett. 102 131117
-
[1] Buchali F, Schuh K, Schmalen L, Idler W, Lach E, Leven A 2013 Optical Fiber Communication Conference Los Angeles, March 19-21, 2013 OTh4E. 3
[2] Ke J H, Gao Y, Cartledge J C 2014 Opt. Express 22 71
[3] Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L, Chandrashekhar S, Draving S, Grove M, Rush K 2013 Optical Fiber Communication Conference Los Angeles, September 23-26, 2013 PDP5A. 5
[4] Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, UmbachA, Margraf M, Stephan J, Draving S, Grove M, Rush K 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 PD2. D. 3
[5] Sköld M, Raybon G, Adamiecki A L, WinzerP J, Sunnerud H, Westlund M, Konczykowska A, Jorge F, Dupuy J, Buhl L, Andrekson P 2013 Photon. Technol. Lett. 25 504
[6] Sköld M, Westlund M, Sunnerud H, Andrekson P 2009 J. Lightw. Technol. 27 3662
[7] Sköld M, Sunnerud H, Westlund M, Andrekson P 2011 European Conference and Exposition on Optical Communications Geneva, September 19-21, 2011 Th. 13. B. 3
[8] Zhang Jianguo, Liu Yuan shan 2011 Acta Photonica Sinica 40 487 (in Chinese) [张建国, 刘元山 2011 光子学报 40 487]
[9] Sunnerud H, Skold M, Westlund M, Andrekson P 2012 J. Lightw. Technol. 30 3747
[10] Eliasson H, Johannisson P, Sunnerud H, Westlund M, Karlsson M, Andrekson P 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 Tu. 3. C. 2
[11] Okamoto T, Ito F 2014 J. Lightw. Technol. 32 3119
[12] Fermann M E, Hartl I 2009 J. Sel. Topics Quantum Electron. 15 191
[13] Dong X Z, Yu Z H, Tian J R, Li Y L, Kou Z Y, Hu M T, Song Y R 2014 Acta Phys. Sin. 63 034202 (in Chinese) [董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉 2014 63 034202]
[14] Westlund M, Sunnerud H, Karlsson M, Andrekson P 2005 J. Lightw. Technol. 23 1088
[15] Westlund M, Sunnerud H, Karlsson M, Andrekson P 2003 Optical Fiber Communication Conference Atlanta, March 25-28, 2003 WP6
[16] Dorrer C, Kilper D C, Stuart H R, Raybon G, Raymer M G 2003 Photon. Technol. Lett. 15 1746
[17] Dorrer C, Doerr C R, Kang I, Ryf R, Leuthold J, Winzer P J 2005 J. Lightw. Technol. 23 178
[18] Dorrer C 2006 J. Lightw. Technol. 24 313
[19] Seimetz M 2008 Optical Fiber Communication Conference San Diego, February 26-28, 2008 OTuM2
[20] ViterbiA 1983 Transactions on Information Theory 29 543
[21] JiangK, Fu S N, Shum P, Lin C 2010 Photon. Technol. Lett. 22 754
[22] Wang Q Q, Chen T, Zhang B, Li M, Lu Y, Chen K P 2013 Appl. Phys. Lett. 102 131117
计量
- 文章访问数: 6233
- PDF下载量: 175
- 被引次数: 0