搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响

韩韬 刘香莲 李璞 郭晓敏 郭龑强 王云才

引用本文:
Citation:

线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响

韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才

Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser

Han Tao, Liu Xiang-Lian, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Wang Yun-Cai
PDF
导出引用
  • 基于光反馈半导体激光器产生的宽带混沌信号作为物理熵源生成物理随机数已得到广泛研究.线宽增强因子的存在会导致半导体激光器出现大量不稳定动态特性,因此,本文着重研究半导体激光器的线宽增强因子对生成随机数性能的影响.数值仿真结果表明:随着线宽增强因子的增加,光反馈半导体激光器输出混沌信号的延时峰值逐渐减小、最大李雅普诺夫指数逐渐增大.基于不同线宽增强因子下产生的混沌信号提取随机数,并利用NIST SP 800-22软件对生成随机数的性能进行测试.测试结果表明,选取线宽增强因子较大的半导体激光器产生混沌信号作为物理熵源易于生成性能良好的随机数.
    Random numbers play an important role in many fields, including information security, testing and engineering practice. Especially in information security, generation of secure and reliable random numbers, they have a significant influence on national security, financial stability, trade secrets and personal privacy. Generally, random number generators can be classified as two main types: pseudo random number generators and physical random number generators. Pseudo random numbers with high speed are generated by software algorithms, but the inherent periodicity will cause serious hidden dangers when they are used in information security. Random numbers based on physical entropy sources (such as electronic thermal noise, frequency jitter of oscillator, quantum randomness) can produce reliable random numbers. However, due to the limitation of traditional physical source bandwidth, their generation speeds are at a level of Mbit/s typically, which cannot meet the needs of the current high-speed and largecapacity communication. In 2008, Uchida et al. (2008 Nat. Photon. 2 728) realized the physical random number of 1.7 Gbit/s by using a wideband chaotic laser for the first time. The emergence of wideband physical entropy sources such as chaotic laser greatly promote the rapid development of the physical random number generators. As far as we know, a semiconductor laser can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection or photoelectric feedback. However, compared with the structures of other two lasers, the structure of the optical feedback semiconductor laser is simple and easy to integrate. Therefore, chaotic signals have received great attention to produce high-speed physical random number extracted from the optical feedback semiconductor laser. In the reported schemes, a variety of post-processing methods are used to improve the speed and randomness of random numbers. Besides, optimizing the chaotic entropy source can also improve the performance of random number. So far, the influence of internal parameters on the dynamic characteristics of semiconductor lasers has attracted wide attention. The linewidth enhancement factor is one of the key parameters for a semiconductor laser. The values of linewidth enhancement factor are different, depending on the type of semiconductor laser. The existence of linewidth enhancement factor results in a large number of unstable dynamic characteristics of semiconductor lasers. Therefore, it is of great significance for studying the influence of the linewidth enhancement factor on performance of random numbers. In this paper, we focus on the influence of the linewidth enhancement factor on the randomness of the obtained random numbers. The time delay characteristics and complexity are two important parameters to measure the quality of chaotic signals. The simulation results show that with the increase of the linewidth enhancement factor, the time delay characteristic peak of the chaotic signal from an optical feedback semiconductor laser decreases gradually, meanwhile, the maximum Lyapunov exponent of chaotic signal increases gradually. The randomness of random numbers, generated by the chaotic signal from the optical feedback semiconductor laser under different linewidth enhancement factors, is tested by NIST SP 800-22. The test results show that semiconductor laser with larger linewidth enhancement factor is chosen as a physical entropy source to generate random numbers with high quality.
      通信作者: 刘香莲, liuxianglian@tyut.edu.cn
    • 基金项目: 山西省自然科学基金(批准号:201601D021021)、国家自然科学基金(批准号:61671316,61505137,61405138,61505136)、国家自然科学基金科学仪器基础研究专款(批准号:61227016)、国家国际科技合作专项(批准号:2014DFA50870)和太原理工大学引进人才基金(批准号:tyutrc201387a)资助的课题.
      Corresponding author: Liu Xiang-Lian, liuxianglian@tyut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D021021), the National Natural Science Foundation of China (Grant Nos. 61671316, 61505137, 61405138, 61505136), the Special Fund For Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 2014DFA50870), and the Qualified Personnel Foundation of Taiyuan University of Technology (Grant No. tyutrc201387a).
    [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 49 636]

  • [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 49 636]

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强.  , 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案.  , 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [3] 刘远, 袁冀扬, 周心雨, 谷双全, 周沛, 穆鹏华, 李念强. 基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生.  , 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [4] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数.  , 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [5] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究.  , 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [6] 杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响.  , 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [7] 颜森林. 外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究.  , 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [8] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥.  , 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [9] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析.  , 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [10] 赵严峰. 双反馈半导体激光器的混沌特性研究.  , 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [11] 孔令琴, 樊林林, 王安帮, 王云才. 相干长度可连续调谐的半导体激光器.  , 2009, 58(11): 7680-7685. doi: 10.7498/aps.58.7680
    [12] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究.  , 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [13] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究.  , 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [14] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究.  , 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [15] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程.  , 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] 周 庆, 胡 月, 廖晓峰. 基于鼠标轨迹和混沌系统的真随机数产生器研究.  , 2008, 57(9): 5413-5418. doi: 10.7498/aps.57.5413
    [17] 王 蕾, 汪芙平, 王赞基. 一种新型的混沌伪随机数发生器.  , 2006, 55(8): 3964-3968. doi: 10.7498/aps.55.3964
    [18] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制.  , 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [19] 盛利元, 曹莉凌, 孙克辉, 闻 姜. 基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析.  , 2005, 54(9): 4031-4037. doi: 10.7498/aps.54.4031
    [20] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源.  , 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
计量
  • 文章访问数:  7530
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map