-
利用外部光注入混沌激光器产生了完全符合美国联邦通信委员会关于室内无线通信频谱限定的超宽带(UWB)微波信号.基于外部光注入光反馈半导体激光器的速率方程组,理论研究了外部及内部参量对半导体激光器输出混沌UWB脉冲信号的影响.研究表明,UWB信号的-10 dB带宽随着光注入强度、注入失谐量以及线宽增强因子的增大而增大,随着激光器偏置电流的增大而减小.同时,UWB信号的中心频率在58 GHz范围内变化.在实验中,通过设定其他参量和调节光注入强度,得到中心频率及带宽可调谐的混沌UWB微波信号,传输速率达到500 Mbit/s.实验结果与理论分析相符合.The ideal ultra-wideband (UWB) microwave pulses that fully comply with the indoor spectrum mask governed by Federal Communications Commission(FCC Indoor Mask)are generated by using continuous-wave optical injection to a chaotic laser diode. We firstly simulate and demonstrate the photonic generation of the chaotic UWB signal according to the rate equations of laser diode with optical feedback and injection. The simulations display that the -10 dB bandwidth of UWB signal increases with the increases of optical injection strength, frequency detuning, linewidth enhancement factor and with the decrease of bias current of the slave laser, and the UWB signal central frequency changes in a range from 5 to 8 GHz. We further experimentally obtain tunable chaotic UWB microwave signals with a rate up to 500 Mbit/s by tuning optical injection strength when the other parameters are fixed. The experimental results are in accordance with the theoretical analyses.
[1] Aiello G R, Rogerson G D 2003 IEEE Microwave Mag. 4 36
[2] Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102
[3] [4] [5] Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295
[6] Wang Y C 2009 Laser Optoelectron. Prog. 46 13(in Chinese) [王云才 2009 激光与光电子学进展 46 13]
[7] [8] Shi Z G, Qiao S, Chen K S, Cui W Z, Ma W, Jiang T, Ran L X 2007 Prog. Electromagn. Res. 77 1
[9] [10] Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵、张建忠、杨毅彪、梁君生、王云才 2010 59 7679]
[11] [12] Chen S S, Zhang J Z, Yang L Z, Liang J S, Wang Y C 2011 Acta Phys. Sin. 60 010501(in Chinese)[陈莎莎、张建忠、杨玲珍、梁君生、王云才 2011 60 010501]
[13] [14] [15] Chong C C, Yong S K 2008 IEEE Trans. Veh.Technol. 57 1527
[16] [17] Jeong M I, Lee J N, Lee C S 2008 J. Electromagn. Waves Appl. 22 1725
[18] [19] Ran M, Lembrikov B I, Ben Ezra Y 2010 IEEE Photon. J. 2 35
[20] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓、王云才、贺虎成、张明江 2009 58 7241]
[21] [22] [23] Wang Q, Yao J P 2006 Electron. Lett. 42 1304
[24] [25] Li J Q, Fu S N, Xu K, Wu J, Lin J T, Tang M, Shum P 2008 Opt. Lett. 33 288
[26] [27] Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 IEEE J. Lightwave Technol. 26 2635
[28] [29] Zhou E, Yu X B, Zhang X L, Xue W Q, Yu Y, Mrk J, Monroy I T 2009 Opt. Lett. 34 1336
[30] [31] Pan S L, Yao J P 2009 Opt. Lett. 34 160
[32] [33] Bolea M, Mora J, Ortega B, Capmany J 2009 Opt. Express 17 5023
[34] Yu X, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235
[35] [36] [37] Zadok A, Wu X X, Sendowski J, Yariv A, Willner A E 2010 IEEE Photon. Technol. Lett. 22 239
[38] Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1
[39] [40] Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安邦、王冰洁、李艳丽、郭 萍 2007 56 4372]
[41] [42] [43] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[44] [45] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[46] [47] Osinski M, Buus J 1987 IEEE J. Quantum Electron. 23 9
[48] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[49] [50] [51] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[52] Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120
[53] -
[1] Aiello G R, Rogerson G D 2003 IEEE Microwave Mag. 4 36
[2] Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102
[3] [4] [5] Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295
[6] Wang Y C 2009 Laser Optoelectron. Prog. 46 13(in Chinese) [王云才 2009 激光与光电子学进展 46 13]
[7] [8] Shi Z G, Qiao S, Chen K S, Cui W Z, Ma W, Jiang T, Ran L X 2007 Prog. Electromagn. Res. 77 1
[9] [10] Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese)[张继兵、张建忠、杨毅彪、梁君生、王云才 2010 59 7679]
[11] [12] Chen S S, Zhang J Z, Yang L Z, Liang J S, Wang Y C 2011 Acta Phys. Sin. 60 010501(in Chinese)[陈莎莎、张建忠、杨玲珍、梁君生、王云才 2011 60 010501]
[13] [14] [15] Chong C C, Yong S K 2008 IEEE Trans. Veh.Technol. 57 1527
[16] [17] Jeong M I, Lee J N, Lee C S 2008 J. Electromagn. Waves Appl. 22 1725
[18] [19] Ran M, Lembrikov B I, Ben Ezra Y 2010 IEEE Photon. J. 2 35
[20] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241(in Chinese) [牛生晓、王云才、贺虎成、张明江 2009 58 7241]
[21] [22] [23] Wang Q, Yao J P 2006 Electron. Lett. 42 1304
[24] [25] Li J Q, Fu S N, Xu K, Wu J, Lin J T, Tang M, Shum P 2008 Opt. Lett. 33 288
[26] [27] Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 IEEE J. Lightwave Technol. 26 2635
[28] [29] Zhou E, Yu X B, Zhang X L, Xue W Q, Yu Y, Mrk J, Monroy I T 2009 Opt. Lett. 34 1336
[30] [31] Pan S L, Yao J P 2009 Opt. Lett. 34 160
[32] [33] Bolea M, Mora J, Ortega B, Capmany J 2009 Opt. Express 17 5023
[34] Yu X, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235
[35] [36] [37] Zadok A, Wu X X, Sendowski J, Yariv A, Willner A E 2010 IEEE Photon. Technol. Lett. 22 239
[38] Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1
[39] [40] Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才、张耕玮、王安邦、王冰洁、李艳丽、郭 萍 2007 56 4372]
[41] [42] [43] Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144
[44] [45] Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[46] [47] Osinski M, Buus J 1987 IEEE J. Quantum Electron. 23 9
[48] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[49] [50] [51] Lin F Y, Liu J M 2003 Opt. Commun. 221 173
[52] Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120
[53]
计量
- 文章访问数: 7317
- PDF下载量: 664
- 被引次数: 0