搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧蚀等离子体流场尾迹区的天线辐射特性

王宇轩 郭琳静 李江挺 郭立新 臧俊魏 段佰利

引用本文:
Citation:

烧蚀等离子体流场尾迹区的天线辐射特性

王宇轩, 郭琳静, 李江挺, 郭立新, 臧俊魏, 段佰利

Antenna Radiation Characteristics of the Wake Region in Ablative Plasma Flow

Wang Yuxuan, Guo LinJing, Li Jiangting, Guo Lixin, Zang Junwei, Duan Baili
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在超音速气动热能的加热下,当飞行器表面防/隔热材料的壁面温度超过其耐受极限时,表面区域将出现高温热化学烧蚀及机械剥蚀等退化损伤现象,产生的烧蚀扩散产物(烧蚀颗粒)引射到周围等离子体流场中悬浮在飞行器周围,形成伴有烧蚀扩散物的高超声速等离子体流场,烧蚀扩散物的存在可对原等离子体流场的物理特征及电磁特性产生重要影响。本文通过建立包覆钝头锥体的等离子体流场及机载天线的耦合电磁模型,采用射线追踪方法,定量分析了伴生烧蚀产物的尾迹区等离子体流场对喇叭天线辐射特性的影响。研究结果表明,包覆飞行器的等离子体流场可造成一定量的天线辐射能量损失,而流场中弥散的烧蚀颗粒将会使这一情况加重,且烧蚀产物的密度及几何尺寸都可对天线辐射能量的损失产生影响。该研究可为解决临近空间高超声速飞行器信息传输瓶颈背后的电磁波传播提供参考,为进一步深入研究高超声速飞行器的目标探测、识别、防/隔热材料及系统设计等技术提供理论参考。
    When the wall temperature of the thermal protection or insulation materials on the surface of an aircraft exceeds their tolerance limits under the heating of supersonic aerodynamic heat energy, degradation damage phenomena such as high-temperature thermochemical ablation and mechanical erosion will occur in the surface area. The ablation diffusion products (ablation particles) generated are ejected into the surrounding plasma flow field and suspended around the aircraft, forming a hypersonic plasma flow field with ablation diffusion substances. The presence of ablation diffusion substances can significantly affect the physical and electromagnetic characteristics of the original plasma flow field. To address this problem, this study establishes a coupled electromagnetic model of an ablative plasma flow field surrounding a blunt-nosed cone aircraft and analyzes the antenna radiation characteristics in the wake region of the ablative flow field. The research methodology consists of several key steps: Firstly, the plasma flow field around the blunt-nosed cone is simulated using ANSYS FLUENT, a computational fluid dynamics (CFD) software. This step provides the fundamental flow field parameters (e.g., electron density, temperature, and pressure distributions). Secondly, ablation particles, generated from thermal protection material degradation, are uniformly dispersed into the plasma flow. Then, the ablative plasma flow field is obtained. Thirdly, an X-band horn antenna is designed in ANSYS HFSS and loaded into the center of the wake region of the ablative plasma flow field. Based on above models, the ray-tracing method is employed to quantitatively evaluate the attenuation of antenna radiation as it propagates through the wake region. The numerical results demonstrate that the plasma flow field enveloping the aircraft induces significant attenuation of antenna radiation energy. More noteworthy is that the presence of ablation particles within the flow field substantially amplifies this energy dissipation effect. Both the ablation particle density and size distribution are identified as dominant factors controlling radiative energy loss, exhibiting proportional relationships with the incident field's attenuation. The study systematically proves the impact of ablation particle density and size on initial field energy attenuation. This research can provide a reference for addressing the electromagnetic wave propagation underlying the information transmission bottleneck of near-space hypersonic aircraft. It also offers a theoretical basis for further in-depth research on technologies such as target detection, identification, thermal protection/insulation materials, and system design of hypersonic aircraft.
  • [1]

    Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305

    [2]

    Li J F, Wang Y, Zhou Z X, Yao J F, Liu J L, Lan Z H, Yuan C X 2023 Nanophotonics 12 1847

    [3]

    Chen S G, Hou L, Shi W, Yang L, Dong C G, Wang Z Q, Chang Z S, Zhang G J 2023 IEEE Trans. THz Sci. Technol. 13 28

    [4]

    Yang W O, Liu Q, Mao W, Gao S, Wu Z 2023 IEEE Trans. Antennas Propag. 71 2710

    [5]

    Zhang Y, Xu G, Zheng Z 2021 Waves Random Complex Media 31 2466

    [6]

    Bogatskaya A V, Klenov N V, Tereshonok M V,Adjemov, S S,Popov, A M 2018 J. Phys. D: Appl. Phys. 51 185602

    [7]

    Li X P, Liu Y M, Xie K 2018 Theory and Communication Technology of Electromagnetic Wave Propagation in Plasma Sheath of High Speed Aircraft (Beijing: Science Press) p35 (in Chinese) [李小平,刘彦明,谢楷 2018 高速飞行器等离子体鞘套电磁波传播理论与通信技术(北京:科学出版社) 第35页]

    [8]

    Sha Y X, Zhang H L, Guo X Y, Xia M Y 2019 IEEE Trans. Antennas Propag. 67 2470

    [9]

    Li J, He M, Li X P, Zhang C F 2018 IEEE Trans. Antennas Propag. 66 3653

    [10]

    Zhao Z, Yuan K, Tang R, Lin H, Deng X 2022 IEEE Trans. Plasma Sci. 50 517

    [11]

    Ni Y X, Zhao Z Y, Yuan K, Tang Y X, Hong L J 2023 IEEE Trans. Plasma Sci. 51 2736

    [12]

    Mei J, Xie Y J 2017 IEEE Trans. Plasma Sci. 45 364

    [13]

    Xu J, Bai B W, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wireless Propag. Lett. 16 1056

    [14]

    Chen X Y, Li K X, Liu Y Y, Zhou Y G, Li X P, Liu Y M 2017 IEEE Trans. Plasma Sci. 45 3166

    [15]

    Zheng Y K, Ye Y D, Tian H, Tian H, Jiang Q X 2024 Aerosp. Technol. 2 54 (in Chinese)[郑永康,叶友达,田浩,田浩,蒋勤学 2024 空天技术 2 54]

    [16]

    Mao M Y, Peng K P, Zhao Z Y, Yuan K, Xiong J W, Tang R X, Deng X H 2024 IEEE Trans. Plasma Sci. 52 240

    [17]

    Deng Q Q, Chen W, Yang L X, Chen C X, Bo Y, Guo L X 2024 IEEE Trans. Plasma Sci. 52 1452

    [18]

    Guo Y J, Shi W B, Zeng L, Du L 2019 Mechanism of Ablative Thermal Protection Applied To Hypersonic Vehicles p25 ((in Chinese)[国义军,石卫波,曾磊,杜百合 2019 高超声速飞行器烧蚀防热理论与应用(北京:科学出版社) 第25页]

    [19]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27-30, 2011, AIAA 2011-897

    [20]

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109 (in Chinese) [曾学军, 李海燕 2017 宇航学报 38 109]

    [21]

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李开 2017 博士学位论文 (长沙: 国防科学技术大学)]

    [22]

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese) [李开, 刘伟强 2016 65 064701]

    [23]

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702 (in Chinese) [姚霄, 刘伟强, 谭建国 2018 67 174702]

    [24]

    Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018

    [25]

    Ding M S, Liu Q Z, Jiang T, Fu Y A X, Li P, Mei J 2024 Acta Phys. Sin. 73 115204 (in Chinese) [丁明松,刘庆宗, 江涛, 傅杨奥骁,李鹏,梅杰2024 73 115204]

    [26]

    Shao C, Nie L, Chen W F 2016 Aerosp. Sci. and Technol. 51 151

    [27]

    Zhao W W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [赵文文 2014 博士学位论文(杭州:浙江大学)]

    [28]

    Chang P C Y, Walker J G, Hopcraft K I 2005 J. Quant. Spectrosc. Radiat. Transfer 96 327

    [29]

    Li L Q, Wei B; Yang Q, Yang X, Ge D B 2017 IEEE Trans. Antennas wireless propag. Letter. 16 2078

    [30]

    Wang M Y, Li H L, Dong Y L, Li G P, Jiang B J, Zhao Q, Xu J 2016 IEEE Trans. Antennas Propag. 64 286

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , doi: 10.7498/aps.73.20240128
    [2] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , doi: 10.7498/aps.73.20231733
    [3] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用.  , doi: 10.7498/aps.71.20212115
    [4] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究.  , doi: 10.7498/aps.71.20220851
    [5] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究.  , doi: 10.7498/aps.71.20211901
    [6] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制.  , doi: 10.7498/aps.70.20210737
    [7] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究.  , doi: 10.7498/aps.70.20210807
    [8] 胡立军, 袁海专, 杜玉龙. 一种改进的HLLEM格式及其激波稳定性分析.  , doi: 10.7498/aps.69.20191851
    [9] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响.  , doi: 10.7498/aps.69.20200212
    [10] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , doi: 10.7498/aps.66.024701
    [11] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析.  , doi: 10.7498/aps.66.055202
    [12] 谢文佳, 李桦, 潘沙, 田正雨. 一类新型激波捕捉格式的耗散性与稳定性分析.  , doi: 10.7498/aps.64.024702
    [13] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究.  , doi: 10.7498/aps.64.214201
    [14] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究.  , doi: 10.7498/aps.64.014704
    [15] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , doi: 10.7498/aps.64.054706
    [16] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , doi: 10.7498/aps.62.210601
    [17] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究.  , doi: 10.7498/aps.61.064703
    [18] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , doi: 10.7498/aps.61.184401
    [19] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟.  , doi: 10.7498/aps.53.2638
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波.  , doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  33
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-01

/

返回文章
返回
Baidu
map