搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究

何金云 彭代江 王燕舞 龙飞 邹正光

引用本文:
Citation:

具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究

何金云, 彭代江, 王燕舞, 龙飞, 邹正光

First principle calculation and photocatalytic performance of BixWO6 (1.81 ≤ x ≤ 2.01) with oxygen vacancies

He Jin-Yun, Peng Dai-Jiang, Wang Yan-Wu, Long Fei, Zou Zheng-Guang
PDF
导出引用
  • 为了探索影响Bi2WO6光催化性能的内在机制,采用密度泛函理论(DFT)计算和实验研究了非化学计量和氧空位对Bi2WO6晶体结构、电子结构和显微结构的影响.采用溶剂热法合成了具有氧空位的非化学计量BixWO6(x=1.81,1.87,1.89,1.92,2.01)光催化剂.DFT计算结果表明,氧空位的存在可显著减小Bi2WO6的带隙,有利于光生电子的生成.实验结果表明,当Bi元素的含量小于化学计量比时,Bi2WO6的晶体结构发生了微小变形,Bi元素含量对Bi2WO6的显微结构影响不大,但会影响产品氧空位的含量和光吸收性能,并有效抑制电子空穴的复合.Bi1.89WO6产品的光催化性能最佳,可见光照射180 min后,可降解98%的罗丹明B.采用适当方法,使产品具有氧空位和非化学计量是获得高光催化活性材料的一种有效方法.
    Semiconductor photocatalyst Bi2WO6 has an extensive application prospect in organic contaminant degradation.But its energy band is relatively large and the recombination rate of photon-generated carriers is high,which prohibit its rapid development and applications.Many methods such as ion doping,non-stoichiometry,semiconductor heterojunction have been used to improve the photocatalytic activity of Bi2WO6.But the improvement mechanism is still not very clear.In this paper,by using first principle density functional theory (DFT) calculation,we study the influences of oxygen vacancy on the bond length,charge population,band structure,defect formation energy,and density of states of Bi2WO6.On the basis of DFT calculation results,different non-stoichiometric BixWO6 (x=1.81,1.87,1.89,1.92,2.01) products with oxygen vacancies are synthesized through the solvothermal method.The products are characterized by X-ray diffraction,scanning electron microscopy,X-ray photoelectron spectroscopy,UV-vis diffuse reflectance spectra photoluminescence spectroscopy,and X-ray Fluorescence.The effects of non-stoichiometric Bi element on crystal structure,chemical composition,the number of oxygen vacancies,microstructure,and photocatalytic properties are investigated and the improvement mechanism of the photocatalytic property is explored.The DFT calculation results reveal that the formation energies of Bi16W8O48 are different for the three kinds of oxygen vacancies and the bond lengths of Bi–O and W–O with one oxygen vacancy decrease a little and the bond populations decrease significantly for the Bi and W atoms adjacent to oxygen vacancy.The existence of oxygen vacancies forms O 2p impurity energy level and significantly reduces the band gap of Bi2WO6. The absorption spectra indicate that the absorption intensities in the visible light increase for the Bi16W8O48 cell with oxygen vacancy defects increasing.The DFT calculation results show that oxygen vacancy defects promote the formation of photoelectrons and enhance the photocatalytic performance of Bi2WO6.The experimental results show that non-stoichiometric Bi element makes the crystal structure slightly deformed and significantly affects the number of oxygen vacancies,photoabsorption capacity and the electron-hole recombination of Bi2WO6.The Bi1.89WO6 product has the best photocatalytic performance,and the rhodamine B is degraded by 98% after being irradiated for 180 min by visible light.Therefore,non-stoichiometric semiconductor with oxygen vacancy is testified to be an efficient method of obtaining high activity photocatalyst.
      通信作者: 彭代江, pengdj@glut.edu.cn;wangyw@glut.edu.cn ; 王燕舞, pengdj@glut.edu.cn;wangyw@glut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51662005)和广西自然科学基金(批准号:2016GXNSFAA380101)资助的课题.
      Corresponding author: Peng Dai-Jiang, pengdj@glut.edu.cn;wangyw@glut.edu.cn ; Wang Yan-Wu, pengdj@glut.edu.cn;wangyw@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51662005) and the Guangxi Natural Science Foundation, China (Grant No. 2016GXNSFAA380101).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Jing L, Sun X 2003 Sol. Energy Mater. Sol. Cells 79 133

    [3]

    Liu Y, Yu L, Wei Z G, Pan Z C, Zou Y D, Xie Y H 2013 Chem. J. Chin. Univ. (in Chinese) [刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪 2013 高等学校化学学报 34 434]

    [4]

    Carp O, Huisman C L, Reller A 2004 Prog. Solid State Chem. 32 33

    [5]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [6]

    Wang P, Huang B, Lou Z 2010 Chem. Eur. J. 16 538

    [7]

    Kubacka A, Fern Ndezgarc A M, Col N G 2012 Chem. Rev. 112 1555

    [8]

    Kudo A, Omori K, Kato H 1999 J. Am. Chem. Soc. 121 11459

    [9]

    Fu H, Pan C, Yao W 2005 J. Phys. Chem. B 109 22432

    [10]

    Zhang L, Wang W, Yang 2006 J. Appl. Catal. A 308 105

    [11]

    Lai K, Zhu Y, Lu J 2013 Comput. Mater. Sci. 67 88

    [12]

    Zeng D W, Xie C S, Zhu B L 2003 Mater. Sci. Eng. B 104 68

    [13]

    Zhang L, Wang W, Zhou L 2007 Small 3 1618

    [14]

    Zhang Z, Wang W, Gao E 2012 J. Phys. Chem. C 116 25898

    [15]

    Bhattacharya C, Lee H C, Bard A J 2013 J. Phys. Chem. C 117 9633

    [16]

    Sun Z X, Li X F, Guo S, Wang H Q, Wu Z B 2013 J. Colloid Interf. Sci. 412 31

    [17]

    Kuo T J, Lin C N, Kuo C L, Huang M H 2007 Chem. Mater. 19 5143

    [18]

    Wang J C, Liu P, Fu X Z, Li Z H, Han W, Wang X X 2009 Langmuir. 25 1218

    [19]

    Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F, Zhu Y J 2007 Inorg. Chem. 46 6675

    [20]

    Gong X Q, Selloni A, Batzil M 2006 Nat. Mater. 5 665

    [21]

    Zhang Z, Wang W, Gao E, Shang M, Xu J 2011 J. Hazard Mater. 196 255

    [22]

    Nie Z, Ma D, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438

    [23]

    Mcdowell N A, Knight K S 2006 Chem. Eur. J. 12 1493

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I 2008 Phys. Rev. Lett. 101 136406

    [25]

    Lu Q, Hua L G, Chen Y L 2015 J. Inorg. Mater. 30 413 (in Chinese) [卢青, 华罗光, 陈亦琳 2015 无机材料学报 30 413]

    [26]

    Zhou B, Zhao X, Liu H 2010 Appl. Catal. B 99 214

    [27]

    Sun S B, Chang X T, Li Z J 2012 Mater. Charact. 73 130

    [28]

    Lin Z, Wang W, Liu S 2006 J. Mol. Catal. A 252 120

    [29]

    Wu J, Duan F, Zheng Y 2007 J. Phys. Chem. C 111 12866

    [30]

    Ding X, Zhao K, Zhang L 2014 Environ. Sci. Technol. 48 5823

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Jing L, Sun X 2003 Sol. Energy Mater. Sol. Cells 79 133

    [3]

    Liu Y, Yu L, Wei Z G, Pan Z C, Zou Y D, Xie Y H 2013 Chem. J. Chin. Univ. (in Chinese) [刘月, 余林, 魏志钢, 潘湛昌, 邹燕娣, 谢英豪 2013 高等学校化学学报 34 434]

    [4]

    Carp O, Huisman C L, Reller A 2004 Prog. Solid State Chem. 32 33

    [5]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [6]

    Wang P, Huang B, Lou Z 2010 Chem. Eur. J. 16 538

    [7]

    Kubacka A, Fern Ndezgarc A M, Col N G 2012 Chem. Rev. 112 1555

    [8]

    Kudo A, Omori K, Kato H 1999 J. Am. Chem. Soc. 121 11459

    [9]

    Fu H, Pan C, Yao W 2005 J. Phys. Chem. B 109 22432

    [10]

    Zhang L, Wang W, Yang 2006 J. Appl. Catal. A 308 105

    [11]

    Lai K, Zhu Y, Lu J 2013 Comput. Mater. Sci. 67 88

    [12]

    Zeng D W, Xie C S, Zhu B L 2003 Mater. Sci. Eng. B 104 68

    [13]

    Zhang L, Wang W, Zhou L 2007 Small 3 1618

    [14]

    Zhang Z, Wang W, Gao E 2012 J. Phys. Chem. C 116 25898

    [15]

    Bhattacharya C, Lee H C, Bard A J 2013 J. Phys. Chem. C 117 9633

    [16]

    Sun Z X, Li X F, Guo S, Wang H Q, Wu Z B 2013 J. Colloid Interf. Sci. 412 31

    [17]

    Kuo T J, Lin C N, Kuo C L, Huang M H 2007 Chem. Mater. 19 5143

    [18]

    Wang J C, Liu P, Fu X Z, Li Z H, Han W, Wang X X 2009 Langmuir. 25 1218

    [19]

    Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F, Zhu Y J 2007 Inorg. Chem. 46 6675

    [20]

    Gong X Q, Selloni A, Batzil M 2006 Nat. Mater. 5 665

    [21]

    Zhang Z, Wang W, Gao E, Shang M, Xu J 2011 J. Hazard Mater. 196 255

    [22]

    Nie Z, Ma D, Fang G Y, Chen W, Huang S M 2016 J. Mater. Chem. A 4 2438

    [23]

    Mcdowell N A, Knight K S 2006 Chem. Eur. J. 12 1493

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I 2008 Phys. Rev. Lett. 101 136406

    [25]

    Lu Q, Hua L G, Chen Y L 2015 J. Inorg. Mater. 30 413 (in Chinese) [卢青, 华罗光, 陈亦琳 2015 无机材料学报 30 413]

    [26]

    Zhou B, Zhao X, Liu H 2010 Appl. Catal. B 99 214

    [27]

    Sun S B, Chang X T, Li Z J 2012 Mater. Charact. 73 130

    [28]

    Lin Z, Wang W, Liu S 2006 J. Mol. Catal. A 252 120

    [29]

    Wu J, Duan F, Zheng Y 2007 J. Phys. Chem. C 111 12866

    [30]

    Ding X, Zhao K, Zhang L 2014 Environ. Sci. Technol. 48 5823

  • [1] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成.  , 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [2] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率.  , 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [3] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [4] 李平, 李海金, 涂文广, 周勇, 邹志刚. Z型光催化材料的研究进展.  , 2015, 64(9): 094209. doi: 10.7498/aps.64.094209
    [5] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布.  , 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究.  , 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [8] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响.  , 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [9] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算.  , 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [10] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能.  , 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [11] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响.  , 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [12] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能.  , 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [13] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究.  , 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [14] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响.  , 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [15] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响.  , 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [16] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究.  , 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析.  , 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [18] 严成锋, 赵广军, 杭 寅, 张连翰, 徐 军. Ce:Lu2Si2O7闪烁晶体的结构和光谱特性.  , 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [19] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质.  , 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究.  , 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  7067
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2017-12-25
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map