Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of effect of vaiable component Al on HfO2 resistance

Dai Guang-Zhen Jiang Yong-Zhao Ni Tian-Ming Liu Xin Lu Lin Liu Qi

Citation:

First principles study of effect of vaiable component Al on HfO2 resistance

Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi
PDF
HTML
Get Citation
  • In order to improve the resistance properties of HfO2 and increase the consistency and uniformity of conductive filaments formed by oxygen vacancies (VO), the first-principles calculation method based on density functional theory is used to study the micro-properties of Al-doped HfO2 resistive materials. The results show that the interval Al (Int-Al) is more suitable for being incorporated into HfO2, and the closer to the relative position of VO the Int-Al, the faster the convergence rate of the resistive material tends to be stable, and the smaller the formation energy. The effects of different Int-Al concentrations on the formation of HfO2 supercells with VO defects show that when the concentration of doped Int-Al is 4.04%, the fractional charge state density map can form relatively good charge channels. The maximum and critical equipotential surface values are highest, which is conducive to improving the consistency and uniformity of the formation of conductive filaments in HfO2 resistive materials. The calculation of energy formation shows that the change is slow when the concentration of Int-Al is lower than 4.04%. When the concentration of Int-Al is higher than 4.04%, the abnormal increase occurs, which indicates that the defect system becomes more and more difficult to form with the increase of the concentration of Int-Al. The introduction of the impurity and the VO defect destroy the original complete crystal structure, which causes the position of the atoms around the impurity to shift, and the valence electron orbit and the energy level of the crystal are changed, and the distribution of the internal charges of the HfO2 defect system is affected. In order to study the effect of the change of the lattice structure on the formation of the VO conductive filament, the VASP software package is used to calculate the relative ratio of the atoms in the lattice structure of the HfO2 defect system as the reference and the relative ratio of the HfO2 defect system after the optimizing the lattice structure. Further study of the change of lattice structure, when the concentration of doped Int-Al is 4.04%, shows that the defect formation energy decreases significantly, which is conducive to the formation of perfect conductive channel. The conductive channel has a certain reference significance for improving the performance of HfO2 based resistive variable memory materials.
      Corresponding author: Jiang Yong-Zhao, 1215032409@qq.com
    • Funds: Project supported by the Higher Education Foundation of Anhui Province, China (Grant No. KZ00216022), the Research start-up Fund of Anhui University of Engineering, China (Grant No. 2018YQQ007), and the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, 61271377).
    [1]

    赵强 2013 硕士学位论文 (安徽: 安徽大学)

    Zhao Q 2013 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [2]

    张文博, 王华, 许积文, 刘国保, 谢航, 杨玲 2018 材料导报 32 1932Google Scholar

    Zhang W B, Wang H, Xu J W, Liu G B, Xie H, Yang L 2018 Mater. Rev. 32 1932Google Scholar

    [3]

    杨龙康 2014 硕士学位论文 (西安: 西安电子科技大学)

    Yang L K 2014 M. S. Thesis (Xian: Xi'an University of Science and Technology) (in Chinese)

    [4]

    王源, 贾嵩, 甘学温 2011 北京大学学报 47 565Google Scholar

    Wang Y, Jia S, Gan X W 2011 Acta Sci. Natur. Univ. Pekinensis 47 565Google Scholar

    [5]

    Frascaroli J, Volpe F G, Brivio S, Spiga S 2015 Microelectron. Eng. 147 104Google Scholar

    [6]

    Hou T H, Lin K L, Shieh J, Lin J H, Chou C T, Lee Y J 2011 Appl. Phys. Lett. 98 771

    [7]

    李晓燕, 李颖弢, 高晓平, 陈传兵, 韩根亮 2018 科学通报 63 2954

    Li X Y, Li Y T, Gao X P, Chen C B, Han G L 2018 Chin. Sci. Bull. 63 2954

    [8]

    郭家俊, 董静雨, 康鑫, 陈伟, 赵旭 2018 67 063101Google Scholar

    Guo J J, Dong J Y, Kang X, Chen W, Zhao X 2018 Acta Phys. Sin. 67 063101Google Scholar

    [9]

    殷一民, 程海峰, 刘东青, 张朝阳 2016 电子元件与材料 35 9

    Yin Y M, Cheng H F, Liu D Q, Zhang Z Y 2016 Electron. Compon. Mater. 35 9

    [10]

    张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮 2018 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [11]

    张颖, 龙世兵, 刘明 2017 物理 46 645Google Scholar

    Zhang Y, Long S B, Liu M 2017 Physics 46 645Google Scholar

    [12]

    赵远洋 2015 硕士学位论文 (安徽: 安徽大学)

    Zhao Y Y 2015 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [13]

    Xue K H, Blaise P, Fonseca L R C, Nishi Y 2013 Phys. Rev. Lett. 110 065502Google Scholar

    [14]

    刘森, 刘琦 2016 国防科技 37 4

    Liu S, Liu Q 2016 Natl. Def. Sci. Technol. 37 4

    [15]

    Wang Z, Zhu W G, Du A Y, Wu L, Fang Z, Tran X A 2012 IEEE Trans. Electron Devices 59 1203Google Scholar

    [16]

    Wei W, Chuai X, Lu N, Wang Y, Li M, Ye C, Liu M 2017 International Conference on Simulation of Semiconductor Processes and Devices Kamakura, Japan, September 7−9, 2017 p21

    [17]

    Magyari-Köpe B, Dan D, Liang Z, Nishi Y 2016 International Symposium on Vlsi Technology, Systems and Application Hsinchu, Taiwan, April 25−27, 2016 p1

    [18]

    Yang J, Dai Y, Lu S, Jiang X, Wang F, Chen J 2017 J. Semicond. 38 100

    [19]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001Google Scholar

    [20]

    Wei X D, Huang H, Ye C, Wei W, Zhou H, Chen Y, Zhang R L, Zhang L, Xia Q 2019 J. Alloys Compd. 775 1301Google Scholar

    [21]

    代广珍, 罗京, 汪家余, 杨金, 蒋先伟, 刘琦, 代月花, 陈军宁 2014 功能材料 45 15023Google Scholar

    Dai G Z, Luo J, Wang J Y, Yang J, Jiang X W, Liu Q, Dai Y H, Chen J N 2014 J. Funct. Mater. 45 15023Google Scholar

    [22]

    Alayan M, Vianello E, Padovani A, Salvo B D, Larcher L, Perniola L 2017 IEEE Des. Test 34 23

    [23]

    Gao B, Zhang H W, Yu S, Sun B, Liu L F, Liu X Y, Wang Y, Han R Q, Kang J F, Yu B, Wang Y Y 2009 Vlsi Technology Symposium on Kamakura Japan, September 7-9, 2009 p30

    [24]

    杨金 2014 博士学位论文 (安徽: 安徽大学)

    Yang J 2014 Ph. D. Dissertation (Anhui: Anhui University) (in Chinese)

    [25]

    Xie H W, Wang M, Kurunczi P, Erokhin Y, Liu Q, Lv H B, Li Y T, Long S B, Liu S, Liu M 2012 Am. Inst. Phys. 1496 26

    [26]

    Zhang H, Liu L, Gao B, Qiu Y 2011 Appl. Phys. Lett. 98 093509

    [27]

    Tan T T, Gao A, Zha G Q 2018 Superlattices Microstruct. 121 38Google Scholar

    [28]

    Zhao L, Clima S, Magyariköpe B, Jurczak M, Nishi Y 2015 Appl. Phys. Lett. 107 013504Google Scholar

    [29]

    李丛飞, 傅兴华, 李良荣, 赵海臣 2014 微纳电子技术 51 24

    Li C F, Fu X H, Li L R, Zhao H C 2014 Micronanoelectronic Technol. 51 24

    [30]

    Lu L, Liu Y H, Dai G Z, Zhang Y, Ding G G, Liu Q 2018 Optik 164 72Google Scholar

    [31]

    代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花 2015 64 033101Google Scholar

    Dai G Z, Jiang X W, Xu T L, Liu Q, Chen J N, Dai Y H 2015 Acta Phys. Sin. 64 033101Google Scholar

    [32]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [33]

    罗岚, 熊志华, 周耐根 2016 材料导报 30 149

    Luo L, Xiong Z H, Zhou N G 2016 Mater. Rev. 30 149

    [34]

    蒋先伟, 陈军宁, 金波, 王菲菲, 鲁世斌 2016 合肥工业大学学报 39 934Google Scholar

    Jiang X W, Chen J N, Jin B, Wang F F, Lu S B 2016 J. Hefei Univ. Tech. 39 934Google Scholar

    [35]

    汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101Google Scholar

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101Google Scholar

    [36]

    蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁 2015 64 213102Google Scholar

    Jiang X W, Lu S B, Dai G Z, Wang J Y, Jin B, Chen J N 2015 Acta Phys. Sin. 64 213102Google Scholar

    [37]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [38]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes & Devices San Diego, California, September 9−11, 2009 p155

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    贾晓伟, 王敏 2018 材料导报 32 500

    Jia X W, Wang M 2018 Mater. Rev. 32 500

    [41]

    李春萍, 陈鑫, 张宝林 2015 材料导报 39 159Google Scholar

    Li C P, Chen X, Zhang B L 2015 Mater. Rev. 39 159Google Scholar

    [42]

    侯清玉, 赵春旺, 李继军, 王钢 2011 60 047104Google Scholar

    Hou Q Y, Zhao C W, Li J J, Wang G 2011 Acta Phys. Sin. 60 047104Google Scholar

    [43]

    Dai Y H, Zhao Y Y, Wang J Y, Xu J B, Yang F 2015 AIP Adv. 5 017133Google Scholar

    [44]

    Zhao Y Y, Wang J Y, Xu J B, Yang F, Liu Q, Dai Y H 2014 J. Semicond. 35 25

    [45]

    蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁 2015 64 091301Google Scholar

    Jiang X W, Dai G Z, Lu S B, Wang J Y, Dai Y H, Chen J N 2015 Acta Phys. Sin. 64 091301Google Scholar

  • 图 1  HfO2缺陷超胞模型 (a) Sub-Al掺杂到含有VO的HfO2; (b)—(f) Int-Al掺杂含有VO的HfO2, 掺杂Int-Al的个数分别为1—5

    Figure 1.  HfO2 defect supercell model: (a) Sub-Al doping into HfO2 containing VO; (b)−(f) Int-Al doping into HfO2 containing VO, the number of Int-Al is 1 to 5.

    图 2  杂质Al的形成能 (插图中显示了杂质Al的存在方式, 虚线圆表示失去一个O原子后形成的VO)

    Figure 2.  Formation energy of impurity Al, The illustration shows the existence of impurity Al. The dotted circle indicates the formation after losing an O atom.

    图 3  VO缺陷HfO2体系中Int-Al形成能 (插图显示了Int-Al与VO不同间距的分波电荷态密度)

    Figure 3.  Int-Al formation energy in VO deficient HfO2 system, the illustration shows the partial wave charge density of Int-Al and VO at different pitches.

    图 4  不同浓度Int-Al体系的分波电荷态密度图 (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5%

    Figure 4.  The partial wave charge density of Int-Al systems with different concentrations: (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5%.

    图 5  变组分Int-Al掺杂VO缺陷HfO2体系的分波电荷密度等势面值, 插图为Int-Al与VO共掺时的形成能

    Figure 5.  The partial wave charge density equipotential surface value of variable component Int-Al doped VO defect HfO2 system. The illustration shows the formation energy of Int-Al and VO co-doping.

    图 6  HfO2缺陷超胞晶格结构不变的分波电荷态密度

    Figure 6.  The partial wave charge density of in HfO2 defect supercell lattice with invariant lattice structure.

    表 1  m-HfO2晶格参数

    Table 1.  m-HfO2 lattice constants.

    晶格参数ɑ/nmb/nmc/nmβ/(°)
    计算值[38]0.5137 0.519500.5309099.7760
    实验值[39]0.5119 0.516900.5297099.1800
    本文扩展超胞1.02361.037141.0568299.3523
    本文原胞(= 超胞晶格参数/20)0.51180.518570.5284199.3523
    DownLoad: CSV
    Baidu
  • [1]

    赵强 2013 硕士学位论文 (安徽: 安徽大学)

    Zhao Q 2013 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [2]

    张文博, 王华, 许积文, 刘国保, 谢航, 杨玲 2018 材料导报 32 1932Google Scholar

    Zhang W B, Wang H, Xu J W, Liu G B, Xie H, Yang L 2018 Mater. Rev. 32 1932Google Scholar

    [3]

    杨龙康 2014 硕士学位论文 (西安: 西安电子科技大学)

    Yang L K 2014 M. S. Thesis (Xian: Xi'an University of Science and Technology) (in Chinese)

    [4]

    王源, 贾嵩, 甘学温 2011 北京大学学报 47 565Google Scholar

    Wang Y, Jia S, Gan X W 2011 Acta Sci. Natur. Univ. Pekinensis 47 565Google Scholar

    [5]

    Frascaroli J, Volpe F G, Brivio S, Spiga S 2015 Microelectron. Eng. 147 104Google Scholar

    [6]

    Hou T H, Lin K L, Shieh J, Lin J H, Chou C T, Lee Y J 2011 Appl. Phys. Lett. 98 771

    [7]

    李晓燕, 李颖弢, 高晓平, 陈传兵, 韩根亮 2018 科学通报 63 2954

    Li X Y, Li Y T, Gao X P, Chen C B, Han G L 2018 Chin. Sci. Bull. 63 2954

    [8]

    郭家俊, 董静雨, 康鑫, 陈伟, 赵旭 2018 67 063101Google Scholar

    Guo J J, Dong J Y, Kang X, Chen W, Zhao X 2018 Acta Phys. Sin. 67 063101Google Scholar

    [9]

    殷一民, 程海峰, 刘东青, 张朝阳 2016 电子元件与材料 35 9

    Yin Y M, Cheng H F, Liu D Q, Zhang Z Y 2016 Electron. Compon. Mater. 35 9

    [10]

    张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮 2018 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [11]

    张颖, 龙世兵, 刘明 2017 物理 46 645Google Scholar

    Zhang Y, Long S B, Liu M 2017 Physics 46 645Google Scholar

    [12]

    赵远洋 2015 硕士学位论文 (安徽: 安徽大学)

    Zhao Y Y 2015 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [13]

    Xue K H, Blaise P, Fonseca L R C, Nishi Y 2013 Phys. Rev. Lett. 110 065502Google Scholar

    [14]

    刘森, 刘琦 2016 国防科技 37 4

    Liu S, Liu Q 2016 Natl. Def. Sci. Technol. 37 4

    [15]

    Wang Z, Zhu W G, Du A Y, Wu L, Fang Z, Tran X A 2012 IEEE Trans. Electron Devices 59 1203Google Scholar

    [16]

    Wei W, Chuai X, Lu N, Wang Y, Li M, Ye C, Liu M 2017 International Conference on Simulation of Semiconductor Processes and Devices Kamakura, Japan, September 7−9, 2017 p21

    [17]

    Magyari-Köpe B, Dan D, Liang Z, Nishi Y 2016 International Symposium on Vlsi Technology, Systems and Application Hsinchu, Taiwan, April 25−27, 2016 p1

    [18]

    Yang J, Dai Y, Lu S, Jiang X, Wang F, Chen J 2017 J. Semicond. 38 100

    [19]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001Google Scholar

    [20]

    Wei X D, Huang H, Ye C, Wei W, Zhou H, Chen Y, Zhang R L, Zhang L, Xia Q 2019 J. Alloys Compd. 775 1301Google Scholar

    [21]

    代广珍, 罗京, 汪家余, 杨金, 蒋先伟, 刘琦, 代月花, 陈军宁 2014 功能材料 45 15023Google Scholar

    Dai G Z, Luo J, Wang J Y, Yang J, Jiang X W, Liu Q, Dai Y H, Chen J N 2014 J. Funct. Mater. 45 15023Google Scholar

    [22]

    Alayan M, Vianello E, Padovani A, Salvo B D, Larcher L, Perniola L 2017 IEEE Des. Test 34 23

    [23]

    Gao B, Zhang H W, Yu S, Sun B, Liu L F, Liu X Y, Wang Y, Han R Q, Kang J F, Yu B, Wang Y Y 2009 Vlsi Technology Symposium on Kamakura Japan, September 7-9, 2009 p30

    [24]

    杨金 2014 博士学位论文 (安徽: 安徽大学)

    Yang J 2014 Ph. D. Dissertation (Anhui: Anhui University) (in Chinese)

    [25]

    Xie H W, Wang M, Kurunczi P, Erokhin Y, Liu Q, Lv H B, Li Y T, Long S B, Liu S, Liu M 2012 Am. Inst. Phys. 1496 26

    [26]

    Zhang H, Liu L, Gao B, Qiu Y 2011 Appl. Phys. Lett. 98 093509

    [27]

    Tan T T, Gao A, Zha G Q 2018 Superlattices Microstruct. 121 38Google Scholar

    [28]

    Zhao L, Clima S, Magyariköpe B, Jurczak M, Nishi Y 2015 Appl. Phys. Lett. 107 013504Google Scholar

    [29]

    李丛飞, 傅兴华, 李良荣, 赵海臣 2014 微纳电子技术 51 24

    Li C F, Fu X H, Li L R, Zhao H C 2014 Micronanoelectronic Technol. 51 24

    [30]

    Lu L, Liu Y H, Dai G Z, Zhang Y, Ding G G, Liu Q 2018 Optik 164 72Google Scholar

    [31]

    代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花 2015 64 033101Google Scholar

    Dai G Z, Jiang X W, Xu T L, Liu Q, Chen J N, Dai Y H 2015 Acta Phys. Sin. 64 033101Google Scholar

    [32]

    庞华, 邓宁 2014 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [33]

    罗岚, 熊志华, 周耐根 2016 材料导报 30 149

    Luo L, Xiong Z H, Zhou N G 2016 Mater. Rev. 30 149

    [34]

    蒋先伟, 陈军宁, 金波, 王菲菲, 鲁世斌 2016 合肥工业大学学报 39 934Google Scholar

    Jiang X W, Chen J N, Jin B, Wang F F, Lu S B 2016 J. Hefei Univ. Tech. 39 934Google Scholar

    [35]

    汪家余, 赵远洋, 徐建彬, 代月花 2014 63 053101Google Scholar

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101Google Scholar

    [36]

    蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁 2015 64 213102Google Scholar

    Jiang X W, Lu S B, Dai G Z, Wang J Y, Jin B, Chen J N 2015 Acta Phys. Sin. 64 213102Google Scholar

    [37]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [38]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes & Devices San Diego, California, September 9−11, 2009 p155

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    贾晓伟, 王敏 2018 材料导报 32 500

    Jia X W, Wang M 2018 Mater. Rev. 32 500

    [41]

    李春萍, 陈鑫, 张宝林 2015 材料导报 39 159Google Scholar

    Li C P, Chen X, Zhang B L 2015 Mater. Rev. 39 159Google Scholar

    [42]

    侯清玉, 赵春旺, 李继军, 王钢 2011 60 047104Google Scholar

    Hou Q Y, Zhao C W, Li J J, Wang G 2011 Acta Phys. Sin. 60 047104Google Scholar

    [43]

    Dai Y H, Zhao Y Y, Wang J Y, Xu J B, Yang F 2015 AIP Adv. 5 017133Google Scholar

    [44]

    Zhao Y Y, Wang J Y, Xu J B, Yang F, Liu Q, Dai Y H 2014 J. Semicond. 35 25

    [45]

    蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁 2015 64 091301Google Scholar

    Jiang X W, Dai G Z, Lu S B, Wang J Y, Dai Y H, Chen J N 2015 Acta Phys. Sin. 64 091301Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Zhao Yu-Na, Cong Hong-Lu, Cheng Shuang, Yu Na, Gao Tao, Ma Jun-Gang. First-principles study of lattice dynamical and thermodynamic properties of Li2NH. Acta Physica Sinica, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [8] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [9] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [12] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [14] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [15] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] Li Zheng-Fa, Zhong Wei-Lie, Qiu Zhong-Ping, Ge Hong-Liang, Zhang Pei-Lin, Wang Chun-Lei. Dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics and their dependence on lattice structure. Acta Physica Sinica, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
Metrics
  • Abstract views:  8056
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2018
  • Accepted Date:  29 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回
Baidu
map