Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the development mechanism: from two-sided multipactor to one-sided multipactor

Zhang Xue Wang Yong Xu Qiang

Citation:

Research on the development mechanism: from two-sided multipactor to one-sided multipactor

Zhang Xue, Wang Yong, Xu Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multipactor discharge always causes disastrous damage to a vacuum window in high power microwave system, which actually becomes a limiting factor for the output power of vacuum device. To explore the multipactor phenomenon of complicated pill-box window, the mulitpactor in normal field between the metal boundary and the window disk is studied. Through Monte Carlo (MC) simulations, the susceptive curve is fitted and analyzed. The secondary electrons' avalanche behavior under the normal RF field is discussed. It is noticed that the one-sided multipactor is excited within a very limited Vrf-fD region when two-sided multipactor is excited initially. The development condition from two-sided multipactor to the one-sided multipactor is proposed. Through analyzing and MC simulation, the condition is achieved. When the normal RF electric field can satisfy the phase focus conditions of one-sided multipactor, the two-sided multipactor will develop into one-sided multpactor and then reach a saturation value. Meanwhile, the initial effect of electrostatic field on one-sided multipactor is also discussed. On condition that two-sided multipactor can be excited, the number of secondary electrons can increase up to a saturation value when Edc0 is lower than the minimal saturate value of Edc. When Edc0 is lager than the minimal saturate value of Edc and in the Edc/Erf threshold of one-sided resonant multipactor, the number of secondary electrons can also increase to a saturate value. However, When Edc0 is lager than the minimal saturate value of Edc but beyond the Edc/Erf threshold of one-sided resonant multipactor, secondary electrons will be suppressed.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901).
    [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [3]

    Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029

    [4]

    Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [5]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [6]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [7]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583

    [8]

    Michizono S, Saito Y 2011 Vacuum 60 235

    [9]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [10]

    Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724

    [11]

    Farnworth P T 1934 J. Franklin Inst. 218 411

    [12]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)

    [13]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [14]

    Miller H C 1989 IEEE Trans. Electr. Insul. 24 765

    [15]

    Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)

    [16]

    Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218

    [17]

    Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967

    [18]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [19]

    Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619

    [20]

    Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505

    [21]

    Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories

    [22]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [23]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [24]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [25]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]

    [26]

    Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [27]

    Vaughan J R M 1993 IEEE Trans. ED 40 830

    [28]

    Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]

    [29]

    Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508

    [30]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102

    [31]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

  • [1]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [2]

    Vaughan J R M 1961 IEEE Trans. ED 8 302

    [3]

    Saito Y, Matuda N, Anami S, Kinbara A, Horikoshi G, Tanaka J 1989 IEEE Tran. Electr. Insul. 24 1029

    [4]

    Saito Y 1995 IEEE Trans. Dielectr. Electr. Insul. 2 243

    [5]

    Michizono S, Saito Y, Yamaguchi S, Anami S, Matuda N, Kinbara A 1993 IEEE Trans. Electr. Insul. 28 692

    [6]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [7]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583

    [8]

    Michizono S, Saito Y 2011 Vacuum 60 235

    [9]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [10]

    Neuber A, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724

    [11]

    Farnworth P T 1934 J. Franklin Inst. 218 411

    [12]

    Bruining H 1954 Physics and Applications of Secondary Electron Emission (London: Pergamon Press)

    [13]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414

    [14]

    Miller H C 1989 IEEE Trans. Electr. Insul. 24 765

    [15]

    Rasch J 2012 Ph. D. Dissertation (Sweden: Chalmers University of Technology)

    [16]

    Kishek R, Lau Y 1995 Phys. Rev. Lett. 75 1218

    [17]

    Gorshkova M A, Nechaev V E 1999 Radiophys. Quantum Electron. 42 967

    [18]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [19]

    Torregrosa G, Coves A, Vicente C P, Perez A M, Gimeno B, Boria V E 2006 IEEE Electron Dev. Lett. 27 619

    [20]

    Coves A, Torregrosa P G, Vicente C, Gimeno B, Boria V E 2008 IEEE Trans. ED 55 2505

    [21]

    Hays R, Preist D H 1964 Research on Microwave Window Multipactor and its Inhibition U. S. A. Army Electronics Laboratories

    [22]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [23]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [24]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [25]

    Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱方, 张瑞 2014 63 167901]

    [26]

    Lay K A, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [27]

    Vaughan J R M 1993 IEEE Trans. ED 40 830

    [28]

    Barker J R, Schamiloglu E (translated by translating group of ''High-Power Microwave ource, Technologies'') 2005 High-Power Microwave ource and Technologies (Beijing: Qinghua University Press) (in Chinese) [Barker J R, Schamiloglu E编 (《高功率微波源与技术》翻译组译) 2005 高功率微波源与技术 (北京: 清华大学出版社)]

    [29]

    Semenov V, Nechaev V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2005 Phys. Plasmas 12 073508

    [30]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102

    [31]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

  • [1] Shu Pan-Pan, Zhao Peng-Cheng, Wang Rui. Electromagnetic particle simulation of secondary electron multipactor characteristics in inner surface of 110 GHz microwave output window. Acta Physica Sinica, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] Yuyan Xiang,  Li song,  Ma yue. Effect of PMT output electron flow pulse pile-up on photon counting ranging method. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220537
    [3] Xiang Yu-Yan, Li Song, Ma Yue. Effect of pile-up of electron flow pulse from photomultiplier tube on ranging by photon counting. Acta Physica Sinica, 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [4] Dong Ye, Liu Qing-Xiang, Pang Jian, Zhou Hai-Jing, Dong Zhi-Wei. Influence of secondary electron yield of material on two-sided multipactor discharge in cavity. Acta Physica Sinica, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [5] Dong Ye, Liu Qing-Xiang, Pang Jian, Zhou Hai-Jing, Dong Zhi-Wei. Influence of multipactor discharge on field-buildup process in radio-frequency plate cavity. Acta Physica Sinica, 2018, 67(17): 177902. doi: 10.7498/aps.67.20180656
    [6] Dong Ye, Liu Qing-Xiang, Pang Jian, Zhou Hai-Jing, Dong Zhi-Wei. Comparison between the 1st and 3rd order mode temporal characteristics of two-sided multipactor discharge in cavity. Acta Physica Sinica, 2017, 66(20): 207901. doi: 10.7498/aps.66.207901
    [7] Ju Xu-Dong, Dong Ming-Yi, Zhou Chuan-Xing, Dong Jing, Zhao Yu-Bin, Zhang Hong-Yu, Qi Hui-Rong, Ouyang Qun. Study of the two dimensional imaging performance for the gas electron multiplier using the resistive anode readout method. Acta Physica Sinica, 2017, 66(7): 072902. doi: 10.7498/aps.66.072902
    [8] Zhang Yu-Lian, Qi Hui-Rong, Hu Bi-Tao, Wen Zhi-Wen, Wang Hai-Yun, Ouyang Qun, Chen Yuan-Bo, Zhang Jian. Measurement and simulation of the hybrid structure gaseous detector gain. Acta Physica Sinica, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [9] Li Shuang, Chang Chao, Wang Jian-Guo, Liu Yan-Sheng, Zhu Meng, Guo Le-Tian, Xie Jia-Ling. Suppression of secondary electron multipactor on dielectric surface in TM mode. Acta Physica Sinica, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [10] Zhang Xue, Wang Yong, Fan Jun-Jie, Zhang Rui. Numerical simulation of multipactor phenomenon on the surface of cylinder window disk. Acta Physica Sinica, 2014, 63(22): 227901. doi: 10.7498/aps.63.227901
    [11] Zhang Xue, Fan Jun-Jie, Wang Yong. Suppression effect of periodic semicircle groove disk on multipactor. Acta Physica Sinica, 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
    [12] Zhang Xue, Wang Yong, Fan Jun-Jie, Zhu Fang, Zhang Rui. Multipactor phenomenon between metal anddielectric window. Acta Physica Sinica, 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [13] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [14] Dong Ye, Dong Zhi-Wei, Yang Wen-Yuan, Zhou Qian-Hong, Zhou Hai-Jing. Effects of transverse electromagnetic field distribution in the multipactor discharge on dielectric window surface. Acta Physica Sinica, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [15] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin, Wang Yue, Xuan Chun, Xia Hong-Fu. Effects of an external magnetic field on multipactor on a dielectric surface. Acta Physica Sinica, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [16] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin. Numerical simulation of multipactor on dielectric surface in high direct current field. Acta Physica Sinica, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [17] Zhu Fang, Zhang Zhao-Chuan, Dai Shun, Luo Ji-Run. Influence of longitudinal radio frequency electric field on multipactor effect on a dielectric surface. Acta Physica Sinica, 2011, 60(8): 084103. doi: 10.7498/aps.60.084103
    [18] Dong Jing, Lü Xin-Yu, Liu Ben, Liu Rong-Guang, Ma Xiao-Yan, Wang Lan, Chen Yuan-Bo, Ouyang Qun, Xie Yi-Gang. The study of the two-dimensional position sensitive gas electron multiplier based on strips readout. Acta Physica Sinica, 2010, 59(9): 6029-6035. doi: 10.7498/aps.59.6029
    [19] Cai Li-Bing, Wang Jian-Guo. Effects of the microwave magnetic field and oblique incident microwave on multipactor discharge on a dielectric surface. Acta Physica Sinica, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [20] Hao Jian-Hong, Ding Wu, Dong Zhi-Wei. Moltipactor discharge in a magnetically insulated transmission line oscillator. Acta Physica Sinica, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
Metrics
  • Abstract views:  5534
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2015
  • Accepted Date:  18 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map