-
As one of the most popular micro pattern gaseous detectors, gas electron multiplier (GEM) has been extensively studied and applied in recent years. The studies of the detector gain measurement and simulation are important, especially on a low gain scale. Traditionally, the gain measurement is realized by measuring the current or the pulse height spectrum. The former needs complicated electronic chain calibration and the latter needs necessarily to calculate the primary electron number. In this paper, an alternative method to determine the effective gain of GEM is introduced. The GEM gain can be precisely achieved through a gaseous detector of hybrid structure which combines GEM with micro-mesh gaseous structure (MM). The hybrid structure is called GEM-MM for short. The GEM-MM detector consists of drift cathode, standard GEM foil, stainless steel micro mesh, and readout anode. In this detector, the space between the cathode and the GEM foil is called drift gap and the other space between the GEM foil and the mesh is named transfer gap. When the X-rays irradiate into the gas volume of GEM-MM, the primary ionization occurs in both regions. Photoelectrons in the drift gap transfer from the drift region to amplification sensitive areas of the GEM and the MM detector while those in the transfer region are only amplified by the MM detector. In the energy spectrum of 55Fe, there is a clear energy profile including two sets of peaks. The gain of GEM can be easily obtained from the energy spectrum. Meanwhile, detailed simulations are carried out with Garfield++ software package. Simulation of the electron transport parameters has been optimized. and the gains of GEM detector are also calculated for three different gas mixtures. Experimental results of the gains ranging from 3 to 24 are obtained. The gains of GEM under different working voltages are studied precisely from the spectrum measurements. The Penning transfer rate could reach 0.32±0.01 when the simulated value matches the measurement within 1σ error.
-
Keywords:
- gas electron multiplier /
- micromegas /
- gain
[1] Sauli F 1997 Nucl. Instrum. Methods A 386 531
[2] Sauli F 2016 Nucl. Instrum. Methods A 805 2
[3] Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314
[4] Bressan A, de Oliveira R, Gandi A, Labbé J C 1999 Nucl. Instrum. Methods A 425 254
[5] Ketzer B 2013 Nucl. Instrum. Methods A 732 237
[6] Benlloch J M, Dokoutchaeva V, Malakhov N, Menzione A, Munar A 1998 Nucl. Instrum. Methods A 419 410
[7] Tsionou D 2017 Nucl. Instrum. Methods A 845 309
[8] Abbaneo D, Abbas M, Abbrescia M, et al. 2017 Nucl. Instrum. Methods A 845 298
[9] Lippmann C 2016 Nucl. Instrum. Methods A 824 543
[10] Giomataris Y, Rebourgeard Ph, Robert J, Charpak G 1996 Nucl. Instrum. Methods A 376 29
[11] Blum W, Rolandi L 1993 Particle Detection with Drift Chambers (Berlin: Springer) p125
[12] Snäll J 2016 M. S. Thesis (Lund: Lund University)
[13] Binks W 1954 Acta Radiologica 41 85
[14] Benlloch J, Bressan A, Buttner C, Capeans M, Gruwe M, Hoch M, Labbe J C, Placci A, Ropelewski L, Sauli F, Sharma A, Veenhof R 1998 IEEE Trans. Nucl. Sci. 45 234
[15] Bellazzini R, Brez A, Gariano G, Latronico L, Lumb N, Spandre G, Massai M M, Raffo R, Spezziga M A 1998 Nucl. Instrum. Methods A 419 429
[16] Charpak G, Derré J, Giomataris Y, Rebourgeard P 2002 Nucl. Instrum. Methods A 478 26
[17] Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 515 261
[18] Schindler H, Veenhof R Garfield++, https://garfieldppwebcernch/garfieldpp/ [2016-10-04]
[19] Geuzaine C, Remacle J F 2009 Int. J. Numer. Methods Engineer. 79 1309
[20] CSC-IT Center for Science LTD, Elmer, https://wwwcscfi/web/elmer/elmer [2016-10-04]
[21] Sahin Ö, Tapan I, Özmutlu E N, Veenhof R 2010 JINST 5 05002
[22] Zerguerras T, Genolini B, Lepeltier V, Peyré J, Pouthas J, Rosier P 2009 Nucl. Instrum. Methods A 608 397
[23] Mir J A, Maia J M, Conceição A S, et al. 2008 IEEE Trans. Nucl. Sci. 55 2334
[24] Sahin Ö, Kowalski T Z, Veenhof R 2014 Nucl. Instrum. Methods A 768 104
[25] Xie Y G, Chen C, Wang M, L J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Nuclear Detector and Data Acquisition (Beijing: Science Press) p628 (in Chinese) [谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王峰, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第628 页]
-
[1] Sauli F 1997 Nucl. Instrum. Methods A 386 531
[2] Sauli F 2016 Nucl. Instrum. Methods A 805 2
[3] Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314
[4] Bressan A, de Oliveira R, Gandi A, Labbé J C 1999 Nucl. Instrum. Methods A 425 254
[5] Ketzer B 2013 Nucl. Instrum. Methods A 732 237
[6] Benlloch J M, Dokoutchaeva V, Malakhov N, Menzione A, Munar A 1998 Nucl. Instrum. Methods A 419 410
[7] Tsionou D 2017 Nucl. Instrum. Methods A 845 309
[8] Abbaneo D, Abbas M, Abbrescia M, et al. 2017 Nucl. Instrum. Methods A 845 298
[9] Lippmann C 2016 Nucl. Instrum. Methods A 824 543
[10] Giomataris Y, Rebourgeard Ph, Robert J, Charpak G 1996 Nucl. Instrum. Methods A 376 29
[11] Blum W, Rolandi L 1993 Particle Detection with Drift Chambers (Berlin: Springer) p125
[12] Snäll J 2016 M. S. Thesis (Lund: Lund University)
[13] Binks W 1954 Acta Radiologica 41 85
[14] Benlloch J, Bressan A, Buttner C, Capeans M, Gruwe M, Hoch M, Labbe J C, Placci A, Ropelewski L, Sauli F, Sharma A, Veenhof R 1998 IEEE Trans. Nucl. Sci. 45 234
[15] Bellazzini R, Brez A, Gariano G, Latronico L, Lumb N, Spandre G, Massai M M, Raffo R, Spezziga M A 1998 Nucl. Instrum. Methods A 419 429
[16] Charpak G, Derré J, Giomataris Y, Rebourgeard P 2002 Nucl. Instrum. Methods A 478 26
[17] Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 515 261
[18] Schindler H, Veenhof R Garfield++, https://garfieldppwebcernch/garfieldpp/ [2016-10-04]
[19] Geuzaine C, Remacle J F 2009 Int. J. Numer. Methods Engineer. 79 1309
[20] CSC-IT Center for Science LTD, Elmer, https://wwwcscfi/web/elmer/elmer [2016-10-04]
[21] Sahin Ö, Tapan I, Özmutlu E N, Veenhof R 2010 JINST 5 05002
[22] Zerguerras T, Genolini B, Lepeltier V, Peyré J, Pouthas J, Rosier P 2009 Nucl. Instrum. Methods A 608 397
[23] Mir J A, Maia J M, Conceição A S, et al. 2008 IEEE Trans. Nucl. Sci. 55 2334
[24] Sahin Ö, Kowalski T Z, Veenhof R 2014 Nucl. Instrum. Methods A 768 104
[25] Xie Y G, Chen C, Wang M, L J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Nuclear Detector and Data Acquisition (Beijing: Science Press) p628 (in Chinese) [谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王峰, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第628 页]
Catalog
Metrics
- Abstract views: 6239
- PDF Downloads: 210
- Cited By: 0