-
Photomultiplier tubes (PMT) have single photon level sensitivity, low dark count, low after pulse probability, and are widely used in photon-counting lidar in visible spectrum. PMT has no photon detection dead time, for every photon it responds to, it sends out a electron flow pulse, these pulses of electron flow have the po·tential to pile up into larger pulses. When using threshold identification method to identify photon-events, stacked pulse will introduce additional pulse walking error, in the practical application of laser ranging, will directly affect the ranging precision of photon-counting ranging method. Considering the influence of pulse pile-up, a new theoretical model of PMT photon detection was established to describe the influence of pulse pile-up on the detection probability of photon-events by analyzing the relationship between the detection time of photon and the identification time of the PMT final output photon-events. Through Monte Carlo simulation, the relationship among the ranging walking error, ranging accuracy, incident laser pulse width, PMT output electron flow pulse width and photon-events identification threshold is obtained. In order to verify the correctness of the theory, a PMT-based photon-counting lidar system is built. The comparison experiment with GM-APD proves that the influence of pulse pile-up on PMT photon-counting ranging method can not be ignored, and the experimental results are in good agreement with the theoretical model. The PMT photon detection model based on pulse pile-up can guide the design of PMT photon-counting radar and improve the ranging accuracy and precision of the ranging system.
-
Keywords:
- Photomultiplier tubes /
- Pulse pile up /
- photon-counting /
- ranging
-
[1] Degnan J 2016 Remote Sens. 8(11) 958
[2] Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543
[3] Kirmani A, Venkatraman D, Shin D, Colaco A, Wong F N C, Shapiro J H, Goyal V K Science. 2014 343 58
[4] Maccarone A, McCarthy A, Ren X, Warburton R E, Wallace A M, Moffat J, Petillot Y, Buller G S 2015 Opt. Express. 23 33911
[5] Li Z, Lai J, Wang C, Yan W, Li Z 2017 Appl. Opt. 56(23) 6680
[6] Akiba M, Inagaki K, Tsujino K 2012 Optics Express. 20(3) 2779
[7] Ravil A 2018 Applied Optics. 57(14) 3679
[8] Kitsmiller V J, Campbell C, O'Sullivan T D 2020 BiomedicalOptics Express. 11(9) 5373
[9] Jones R, Oliver C, Pike E R 1971 Appl. Opt. 10 1673
[10] McGill M, Markus T, Scott V. S, Neumann T 2013 J. Atmos. Oceanic Technol. 30(2) 345
[11] Abdalati W, Zwally H. J, Bindschadler R, Csatho B, Farrell S L, Fricker H. A, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C, 2010 Proc. IEEE 98(5) 735
[12] Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, B. Schutz E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260
[13] Helstrom C W 1984 Journal of Applied Physics. 55(7) 2786
[14] Ingle J D, Crouch S R 1972 Anal. Chem. 44(4) 777
[15] Donovan D P, Whiteway J A, Carswell I A 1993 Appl. Opt. 32(33) 6742
[16] Chen Z D, Li X D, Li X H, Ye G C, Zhou Z G 2019 Optics Communications. 434 7
[17] Zhang Z Y, Li S, Ma Y, Zhang W H, Zhao P F, Xiang Y Y 2020 Optics Express. 28(9) 13586
[18] Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48(17) 3261
[19] Li S, Zhang Z, Ma Y, Zeng H M, Zhao P F, Zhang W H 2019 Opt. Express 27(12) A861.
Metrics
- Abstract views: 2436
- PDF Downloads: 0
- Cited By: 0