Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparisons and analyses of the aluminum K-shell spectroscopic models

Wu Jian Li Xing-Wen Li Mo Yang Ze-Feng Shi Zong-Qian Jia Shen-Li Qiu Ai-Ci

Citation:

Comparisons and analyses of the aluminum K-shell spectroscopic models

Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Comparing different collisional-radiative models is of great importance for validating the models for plasma spectroscopy and improving the diagnostic accuracy of plasma parameters. In this paper, the widely applied K-shell spectroscopic models, FAC and FLYCHK, are compared based on their calculation results of the aluminum K-shell emissivity and absorption coefficient. The state abundances, K-shell line ratios, K-shell emissivities and absorption coefficients in a wide range of plasma temperatures and densities are calculated and compared, and the reasons for the differences between these two models are discussed. In an electron temperature range from 200 to 800 eV, and an electron density range from 1017 to 1024 cm-3, the Al ions in the plasma are mainly composed of H-like and He-like ions. The ground-state populations of the H-like and He-like ions, calculated from FAC model, are in good agreement with the results from FLYCHK. Number densities of the excited states are two orders or more less than those of the ground states from both the models, and significant differences are observed in the number densities of n=2 and n=3 states of both the H-like and He-like ions. These differences will further result in the differences in spectral line emissivity and their line emissivity ratio, such as He-IC/He-αup and H-βup/He-βup, which are key parameters used to diagnose the electron temperature and density. The line emissivity ratio Ly-αup/(He-αup+He-IC) is less dependent on the electron density, and the difference in line emissivity ratio between the two models mainly lies in the parameter region where both the electron temperature and density are high. The ratio He-IC/He-αup is less dependent on the electron temperature when the electron density is more than 1019 cm-3 while significant differences are observed at a lower electron density.#br#The reason for the difference between the number densities of the low-energy excited states from FAC and FLYCHK models is analyzed by comparing the rate coefficients of various collisional and radiative processes in the rate equation of each state. The differences in the n=2 excited states of H-like ions come from the fact that FAC and FLYCHK models use the detailed-level model and the super-configuration model respectively to construct the rate equations of these states. The FAC model ignores the collisional excitation and de-excitation processes between the n=3 state and higher excitation states (e.g. n = 4) in H-like and He-like ions, which are responsible for the density difference in the n=3 excited state. Higher Rydberg states considered in FLYCHK model do not have any significant influence on the density of the ground-states. The difference in the absorption coefficient between the two models is smaller than that in the emissivity as discussed above, for the absorption coefficient mainly depends on the number density of the ions in ground state.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51237006, 51407138) and the Fund from Key Laboratory of Pulsed Power, China Academy of Engineering Physics (Grant No. PPLF2013PZ05).
    [1]

    Apruzese J P, Whitney K G, Davis J, Kepple P C 1997 J. Quant. Spectrosc. Radiat. Transfer 57 41

    [2]

    Shlyaptseva A S, Hansen S B, Kantsyrev V L, Fedin D A, Ouart N, Fournier K B, Safronova U I 2003 Phys. Rev. E 67 026409

    [3]

    Wu J, Li M, Li X W, Wang L P, Wu G, Guo N, Qiu M T, Qiu A C 2013 Phys. Plasmas 20 082706

    [4]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G: Phys. Mech. Astron. 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑: 物理学 力学 天文学 39 43]

    [5]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [6]

    Gu M F 2008 Can. J. Phys. 86 675

    [7]

    Chung H K, Chen M H, Morgan W L, Ralchenko Yu, Lee R W 2005 High Energ. Dens. Phys. 1 3

    [8]

    Bastiani-Ceccotti S, Renaudin P, Dorchies F, Harmand M, Peyrusse O, Audebert P, Jacquemot S, Calisti A, Benredjem D 2010 High Energ. Dens. Phys. 6 99

    [9]

    Glenzer S H, Fournier K B, Decker C, Hammel B A, Lee R W, Lours L, MacGowan B J, Osterheld A L 2000 Phys. Rev. E 62 2728

    [10]

    Lee R W, Nash J K, Ralchenko Yu 1997 J. Quant Spectrosc. Radiat. Transfer 58 737

    [11]

    Chung H K, Bowen C, Fontes C J, Hansen S B, Ralchenko Yu 2013 High Energ. Dens. Phys. 9 645

    [12]

    Hansen S, Armstrong G S J, Bastiani-Ceccotti S, Bowen C, Chung H K, Colgan J P, de Dortan F, Fontes C J, Gilleron F, Marques J R, Piron R, Peyrusse O, Poirier M, Ralchenko Yu, Sasaki A, Stambulchik E, Thais F 2013 High Energ. Dens. Phys. 9 523

    [13]

    David S 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press) pp216-231

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 59 7922]

    [15]

    Gao Q, Wu Z Q, Zhang C F, Li Z H, Xu R K, Zu X T 2012 Acta Phys. Sin. 61 015201 (in Chinese) [高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛 2012 61 015201]

    [16]

    Gao Q, Zhang C F, Zhou L, Li Z H, Wu Z Q, Lei Y, Zhang C L, Zu X T 2014 Acta Phys. Sin. 63 125202 (in Chinese) [高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛 2014 63 125202]

    [17]

    Chambers D M, Pinto P A, Hawreliak J, Al'Miev I R, Gouveia A, Sondhauss P, Wolfrum E, Wark J S, Glenzer S H, Lee R W, Young P E, Renner O, Marjoribanks R S, Topping S 2002 Phys. Rev. E 66 026410

    [18]

    Lucy L B 2001 Mon. Not. R. Astron. Soc. 326 95

    [19]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203

  • [1]

    Apruzese J P, Whitney K G, Davis J, Kepple P C 1997 J. Quant. Spectrosc. Radiat. Transfer 57 41

    [2]

    Shlyaptseva A S, Hansen S B, Kantsyrev V L, Fedin D A, Ouart N, Fournier K B, Safronova U I 2003 Phys. Rev. E 67 026409

    [3]

    Wu J, Li M, Li X W, Wang L P, Wu G, Guo N, Qiu M T, Qiu A C 2013 Phys. Plasmas 20 082706

    [4]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G: Phys. Mech. Astron. 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑: 物理学 力学 天文学 39 43]

    [5]

    Wang J, Zhang H, Cheng X L 2013 Chin. Phys. B 22 085201

    [6]

    Gu M F 2008 Can. J. Phys. 86 675

    [7]

    Chung H K, Chen M H, Morgan W L, Ralchenko Yu, Lee R W 2005 High Energ. Dens. Phys. 1 3

    [8]

    Bastiani-Ceccotti S, Renaudin P, Dorchies F, Harmand M, Peyrusse O, Audebert P, Jacquemot S, Calisti A, Benredjem D 2010 High Energ. Dens. Phys. 6 99

    [9]

    Glenzer S H, Fournier K B, Decker C, Hammel B A, Lee R W, Lours L, MacGowan B J, Osterheld A L 2000 Phys. Rev. E 62 2728

    [10]

    Lee R W, Nash J K, Ralchenko Yu 1997 J. Quant Spectrosc. Radiat. Transfer 58 737

    [11]

    Chung H K, Bowen C, Fontes C J, Hansen S B, Ralchenko Yu 2013 High Energ. Dens. Phys. 9 645

    [12]

    Hansen S, Armstrong G S J, Bastiani-Ceccotti S, Bowen C, Chung H K, Colgan J P, de Dortan F, Fontes C J, Gilleron F, Marques J R, Piron R, Peyrusse O, Poirier M, Ralchenko Yu, Sasaki A, Stambulchik E, Thais F 2013 High Energ. Dens. Phys. 9 523

    [13]

    David S 1998 Atomic Physics in Hot Plasmas (New York: Oxford University Press) pp216-231

    [14]

    Li J, Xie W P, Huang X B, Yang L B, Cai H C, Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese) [李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康 2010 59 7922]

    [15]

    Gao Q, Wu Z Q, Zhang C F, Li Z H, Xu R K, Zu X T 2012 Acta Phys. Sin. 61 015201 (in Chinese) [高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛 2012 61 015201]

    [16]

    Gao Q, Zhang C F, Zhou L, Li Z H, Wu Z Q, Lei Y, Zhang C L, Zu X T 2014 Acta Phys. Sin. 63 125202 (in Chinese) [高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛 2014 63 125202]

    [17]

    Chambers D M, Pinto P A, Hawreliak J, Al'Miev I R, Gouveia A, Sondhauss P, Wolfrum E, Wark J S, Glenzer S H, Lee R W, Young P E, Renner O, Marjoribanks R S, Topping S 2002 Phys. Rev. E 66 026410

    [18]

    Lucy L B 2001 Mon. Not. R. Astron. Soc. 326 95

    [19]

    Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203

  • [1] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [2] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [4] Sun Yan, Hu Feng, Sang Cui-Cui, Mei Mao-Fei, Liu Dong-Dong, Gou Bing-Cong. Radiative and Auger transitions of K-shell excited resonance states in boron-like sulfur ion. Acta Physica Sinica, 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [5] Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin. Performance of Yb-doped silicate glass with thermal bleaching. Acta Physica Sinica, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [6] Zhang Lei, Yue Hao, Li Mei, Wang Shuai, Mi Xue-Yu. Simulation of pedestrian push-force in evacuation with congestion. Acta Physica Sinica, 2015, 64(6): 060505. doi: 10.7498/aps.64.060505
    [7] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [8] Li Jin-Hua, Wang Zhao-Ba, Wang Zhi-Bin, Zhang Min-Juan, Cao Jun-Qin. Study on the temperature dependence of oxygen A-band absorption coefficient. Acta Physica Sinica, 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [9] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [11] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [12] Li Jing, Xie Wei-Ping, Huang Xian-Bin, Yang Li-Bing, Cai Hong-Chun, Pu Yi-Kang. Application of a collisinal-radiative model for the analysis of K-shell line spectra emitted by Z-pinch plasma. Acta Physica Sinica, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [13] Li Jiu-Sheng, Li Xiang-Jun. Accurate optical parameter determination of corn oil with terahertz wave time-domain spectroscopy. Acta Physica Sinica, 2009, 58(8): 5805-5809. doi: 10.7498/aps.58.5805
    [14] Yan Feng-Ping, Wang Lin, Wei Huai, Fu Yong-Jun, Jian Wei, Zheng Kai, Mao Xiang-Qiao, Li Jian, Liu Li-Song, Peng Jian, Jian Shui-Sheng. Investigation of co-doping Al3+ in ytterbium-doped silica-based fiber. Acta Physica Sinica, 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [15] Hasi Wu-Li-Ji, Lü Zhi-Wei, Gong Sheng, He Wei-Ming, Lin Dian-Yang, Zhang Wei. New SBS media——perfluorinated amines. Acta Physica Sinica, 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [16] Hu Ying, Wang Xiao-Hong, Guo Lan-Tao, Zhang Cun-Lin, Liu Hai-Bo, Zhang Xi-Cheng. Absorption and dispersion of vegetable oil and animal fat in THz range. Acta Physica Sinica, 2005, 54(9): 4124-4128. doi: 10.7498/aps.54.4124
    [17] Zhou Yong-Hua, Zhang Yi-Men, Zhang Yu-Ming, Meng Xiang-Zhi. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector. Acta Physica Sinica, 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
    [18] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [19] Tcheng Da-Tchang, Yang Jeng-Tsong. ON THE ABSORPTION COEFFICIENTS OF β- RAYS. Acta Physica Sinica, 1947, 7(1): 29-47. doi: 10.7498/aps.7.29
    [20] . Acta Physica Sinica, 1936, 2(1): 38-42. doi: 10.7498/aps.2.38
Metrics
  • Abstract views:  5734
  • PDF Downloads:  186
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2015
  • Accepted Date:  16 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map