-
采用传统高温熔融法制备了掺Yb硅酸盐玻璃, 玻璃组成为 60SiO2-12Al2O3-28CaO-1.0 mol%Yb2O3. 将玻璃分成两组, 一组经总剂量3 kGy的Co60辐射源辐射, 另一组做空白对照. 然后测试了玻璃未辐射、辐射后及热漂白后的吸收谱和近红外发光谱. 实验结果表明: 一定的热处理会使得玻璃在辐射过程中产生的色心缺陷发生分解, 即辐射后的玻璃在300900 nm波段的吸收系数显著地降低了, 在400 nm处未经辐射、经3 kGy辐射以及热漂白后的玻璃吸收系数分别是0.93, 2.9, 1.89 cm-1. 另外, 玻璃的近红外发光强度明显增强, 在1028 nm处未经辐射、经3 kGy辐射以及热漂白后的玻璃近红外发光相对强度分别是588, 261, 436, 从而极大地改善了玻璃的光学性能. 所以一定的热处理可以使辐射后的玻璃产生热漂白的现象. 研究结果为进一步发展抗辐射玻璃材料提供了新的实验依据.A series of Yb-doped silicate glasses with the composition of 60 SiO2-12 Al2O3-28 CaO-1.0 mol% Yb2O3 are prepared by a conventional melting method under normal processing conditions. These glasses are divided into two groups. One group experienced a total dose 3 kGy radiation under a Co60 radiation source, and the other group is pristine. The absorption spectra as well as the near-infrared (NIR) luminescence spectra of the glasses (pristine Ybc, irradiated Ybc, heat bleaching Ybc) are investigated. Theoretically, effects of gamma-ray radiation exposure would lead to the formation of color centers in the glass samples. Such radiation-induced color center defects cause a strong broad optical absorption band with widths from 300 to 900 nm, and its tail extends into the NIR region. In this experiment the absorption coefficient of the glass is measured by a ultraviolet-visible spectrophotometer named Lambda35, and the NIR spectrum is measured by a Zolix grating spectrometer named Omni-. Furthermore, a special test system is set up to test the NIR spectrum of the glass at high temperatures. Experimental results show that the absorption coefficient of the glass after irradiation increases significantly in the visible region. The absorption coefficients of the glasses (pristine Ybc, irradiated Ybc) at 400 nm are 0.93 cm-1 and 2.9 cm-1 respectively. With a certain temperature treatment, the absorption coefficient of the irradiated glass is 1.89 cm-1 at 400 nm. Compared with the absorption coefficient obtained before, it is decreased by 35%. The NIR intensities of the glasses (pristine Ybc, irradiated Ybc, heat bleaching Ybc) are 588, 261 and 436 (arbitrary units) respectively. It may be due to the color center defects produced by radiation, that have decomposed under a certain temperature treatment. As a result, this method greatly improve the optical performance of the glass. So thermal bleaching phenomenon will happen in the irradiated glass that experiences in a certain temperature treatment. Finally, results obtained in this paper may provide a theoretical basis for studying the anti-radiation of optical glasses.
-
Keywords:
- Yb-doped silicate glass /
- near infrared luminescence /
- absorption coefficient /
- thermal bleaching
[1] Brooks C, Di Teodoro F 2005 Opt. Express 13 8999
[2] Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019
[3] Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910
[4] Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618
[5] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum. Elect. 33 1049
[6] Tortech B, Ouerdane Y, Girard S, Marcandella C, Robin T 2009 J. Non-Cyst. Solids. 355 1085
[7] Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C 2008 IEEE J. Quantum. Elect. 44 581
[8] Griscom D L 2013 Phys. Res. Int. 2013 379041
[9] Girard S, Kuhnhenn J A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015
[10] Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523
[11] Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15
[12] Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825
[13] Girard S, Tortech B, Regnier E, Uffelen M Van, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426
[14] Tortech B, Gusarov A, Van Uffelen M, Bisutti J, Girard S, Ouerdane Y, Boukenter A, Meunier J P, Berghmans F, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2598
[15] Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A 2009 IEEE Trans. Nucl. Sci. 56 3293
[16] Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923
[17] Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657
[18] Griscom D L 2004 J. Non-Cyst. Solids. 349 139
[19] Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204
[20] Griscom D L 2006 J. Non-Cyst. Solids 352 2601
[21] Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352
[22] Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE 6873 6873F
[23] Zhang H C, Liu H, Qiang W Q, Li X J, He S Y 2012 Acta Phys. Sin. 61 034213 (in Chinese) [张红晨, 刘海, 乔文强, 李兴冀, 何世禹 2012 61 034213]
[24] Carlson C G, Keister K E, Dragic P D, Croteau A, Eden J G 2010 J. Opt. Soc. Am. B 27 2087
[25] Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]
[26] Stroud J S 1962 J. Chem. Phys. 37 836
[27] Stroud J S 1965 J. Chem. Phys. 43 2442
-
[1] Brooks C, Di Teodoro F 2005 Opt. Express 13 8999
[2] Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019
[3] Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910
[4] Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618
[5] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum. Elect. 33 1049
[6] Tortech B, Ouerdane Y, Girard S, Marcandella C, Robin T 2009 J. Non-Cyst. Solids. 355 1085
[7] Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C 2008 IEEE J. Quantum. Elect. 44 581
[8] Griscom D L 2013 Phys. Res. Int. 2013 379041
[9] Girard S, Kuhnhenn J A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015
[10] Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523
[11] Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15
[12] Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825
[13] Girard S, Tortech B, Regnier E, Uffelen M Van, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426
[14] Tortech B, Gusarov A, Van Uffelen M, Bisutti J, Girard S, Ouerdane Y, Boukenter A, Meunier J P, Berghmans F, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2598
[15] Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A 2009 IEEE Trans. Nucl. Sci. 56 3293
[16] Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923
[17] Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657
[18] Griscom D L 2004 J. Non-Cyst. Solids. 349 139
[19] Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204
[20] Griscom D L 2006 J. Non-Cyst. Solids 352 2601
[21] Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352
[22] Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE 6873 6873F
[23] Zhang H C, Liu H, Qiang W Q, Li X J, He S Y 2012 Acta Phys. Sin. 61 034213 (in Chinese) [张红晨, 刘海, 乔文强, 李兴冀, 何世禹 2012 61 034213]
[24] Carlson C G, Keister K E, Dragic P D, Croteau A, Eden J G 2010 J. Opt. Soc. Am. B 27 2087
[25] Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]
[26] Stroud J S 1962 J. Chem. Phys. 37 836
[27] Stroud J S 1965 J. Chem. Phys. 43 2442
计量
- 文章访问数: 5925
- PDF下载量: 112
- 被引次数: 0