-
基于元胞自动机仿真研究拥堵疏散条件下行人拥挤力的产生、传递、吸收、抵消、累积等过程, 以安全出口前拱形的拥挤疏散行人流为研究对象, 研究拥挤致伤的生成机理. 基于行人位置距安全出口的距离, 生成趋于安全出口方向的拥挤力; 引入拥挤力效果与合力参数, 分别描述外界拥挤力对个体行人的作用效果与作用合力; 引入吸收系数与抗死伤系数, 分别描述拥挤力传递过程中行人对外界拥挤力的吸收与抵抗能力. 研究表明, 随吸收系数或抗死伤系数的增加, 能有效预防疏散行人流的拥挤致伤; 存在临界吸收系数与抗死伤系数, 将系统区分为弱保护相位、强保护相位和完全保护相位; 拥挤的死伤数量随疏散行人数量的增加而增加; 而且, 拥挤致伤的危险区域在安全出口前以安全出口中心线为对称轴呈“倒钟”形分布.The simulation of pedestrian push-force in evacuation with arched congestion before exit is presented based on cell automata. The generation, absorption, transfer and gather of pedestrian push-force are analyzed. Initial push-force facing to exit is generated based on the distance between pedestrian and exit. The scalar and vector sum of push-force are introduced to respectively describe the push effect and resultant force of outside jam push-force in crowded evacuation. Absorption coefficient and anti-crush coefficient are introduced to respectively describe the ability for pedestrian to absorb and resist the outside jam push-force. Simulation results show that the increase of absorption coefficient or anti-crush coefficient can effectively prevent pedestrian from being injured. It is found that three phases: weak protection, strong protection and complete protection are distinguished based on two critical absorption coefficients and an anti-crush coefficient. Pedestrian casualties will increase with the number of evacuation pedestrian rising. It is also shown that pedestrian casualties in jam occur in a reverse bell-shape symmetry zone before exit.
-
Keywords:
- pedestrian evacuation /
- pedestrian push-force /
- absorption coefficient /
- anti-crush coefficient
[1] Yue H, Zhang B Y, Shao C F, Xing Y 2014 Chin. Phys. B 23 050512
[2] Yue H, Guan H Z, Shao C F, Zhang X 2011 Physica A 390 198
[3] Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 59 7701]
[4] Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509 (in Chinese) [岳昊, 张旭, 陈刚, 邵春福 2012 61 130509]
[5] Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499 (in Chinese) [岳昊, 邵春福, 关宏志, 段龙梅 2010 59 4499]
[6] Henein C M, White T 2010 Physica A 389 4653
[7] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[8] Helbing D 2001 Rev. Mod. Phys. 73 1067
[9] Song W, Xu X, Wang B H, Ni S 2006 Physica A 363 492
[10] Song W G, Yu Y F, Wang B H, Fan W C 2006 Physica A 371 658
[11] Chen C K, Li J, Zhang D 2012 Physica A 391 2408
[12] Guo R Y, Huang H J 2008 Physica A: Math. Theor. 41 1
[13] Kirchner A, Schadschneider A 2002 Physica A 312 260
[14] Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122
[15] Henein C M, White T 2007 Physica A 373 694
[16] Zhang Q, Han B M 2001 Physica A 390 636
-
[1] Yue H, Zhang B Y, Shao C F, Xing Y 2014 Chin. Phys. B 23 050512
[2] Yue H, Guan H Z, Shao C F, Zhang X 2011 Physica A 390 198
[3] Zhu K J, Yang L Z 2010 Acta Phys. Sin. 59 7701 (in Chinese) [朱孔金, 杨立中 2010 59 7701]
[4] Yue H, Zhang X, Chen G, Shao C F 2012 Acta Phys. Sin. 61 130509 (in Chinese) [岳昊, 张旭, 陈刚, 邵春福 2012 61 130509]
[5] Yue H, Shao C F, Guan H Z, Duan L M 2010 Acta Phys. Sin. 59 4499 (in Chinese) [岳昊, 邵春福, 关宏志, 段龙梅 2010 59 4499]
[6] Henein C M, White T 2010 Physica A 389 4653
[7] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[8] Helbing D 2001 Rev. Mod. Phys. 73 1067
[9] Song W, Xu X, Wang B H, Ni S 2006 Physica A 363 492
[10] Song W G, Yu Y F, Wang B H, Fan W C 2006 Physica A 371 658
[11] Chen C K, Li J, Zhang D 2012 Physica A 391 2408
[12] Guo R Y, Huang H J 2008 Physica A: Math. Theor. 41 1
[13] Kirchner A, Schadschneider A 2002 Physica A 312 260
[14] Kirchner A, Nishinari K, Schadschneider A 2003 Phys. Rev. E 67 056122
[15] Henein C M, White T 2007 Physica A 373 694
[16] Zhang Q, Han B M 2001 Physica A 390 636
计量
- 文章访问数: 6853
- PDF下载量: 424
- 被引次数: 0