Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces

Ju Hai-Lang Xiang Ping-Ping Wang Wei Li Bao-He

Citation:

Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces

Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Co/Ni multilayers with Pt and MgO/Pt underlayer have been grown by means of magnetron sputtering and the perpendicular magnetic anisotropy (PMA) of the samples is studied using anomalous Hall effect (AHE). The Co/Ni multilayer has to be thermally stable to stabilize the PMA, which is studied by annealing treatment. In early researches of Co/Ni multilayes, the optimum sample with Pt underlayer was obtained as Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) with PMA in good performance. Thermal stability of the sample is studied in this paper by the Hall loop measurement of it after annealing. Results show that the remanence ratio and rectangular degree of the sample are kept well and the Hall resistance (RHall) has little change at the annealing temperature of 100 ℃. As the annealing temperature rising above 100 ℃, the PMA of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) becomes weakened. Its coercivity (Hc) decreases rapidly and RHall reduces greatly. So the thermal stability of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) will be poor and the PMA cannot be enhanced by annealing treatment. A series of samples with MgO/Pt underlayer are prepared with the thickness of Pt being fixed at 2 nm and that of MgO ranging from 1 to 5 nm. Thus the interface between amorphous insulation layer and metal layer is added to be used to enhance the PMA of the sample for the strong electron additive scattering. Magnetization reversal can be very rapid and the rectangular degree is kept very well, and furthermore, the remanence ratio of the samples can reach 100% so they all show good PMA.The Hc increases with increasing MgO underlayer and reaches the maximum value as the MgO thickness arrives at 4 nm, and the Hc of the sample MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 2.3 times that of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), the RHall is up to 9% correspondingly. The roughnesses of Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) and MgO(4 nm)/Pt(2 nm)/Co(0.2 nm) /Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) are 0.192 nm and 0.115 nm respectively, as tested by AFM. Result shows that the roughness of the Co/Ni multilayer is greatly reduced so the PMA of the Co/Ni multilayer is enhanced remarkably after the addition of 4 nm MgO. The thermal stability of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is also studied. When the annealing temperature rises up to 200 ℃, the Hc reaches its maximum value i.e. 1.5 times that of the sample without MgO, and it is 3.5 times that of the sample with Pt underlayer only. This sample also show good thermal stability. Higher temperatures will result in intermixing of Co and Ni and diminish the PMA. After annealing at 400 ℃, the easy axis of the sample becomes in-plane. The anisotropy constant Keff of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 8.2106 erg/cm3, and it has an increase of 15% in Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), which shows that the sample has an excellent PMA.
      Corresponding author: Li Bao-He, lbhe@th.btbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174020, 51271211), and the Characteristic research team of Beijing Technology and Business University (Grant No. 19008001076).
    [1]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 64 137201]

    [2]

    Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Zhu T 2014 Chin. Phys. B 23 047504

    [5]

    Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201

    [6]

    Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409

    [7]

    Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203

    [8]

    Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508

    [9]

    Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504

    [10]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]

    [11]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [12]

    Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409

    [13]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410

    [14]

    Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914

    [15]

    Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515

    [16]

    Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504

    [17]

    Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116

    [18]

    McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980

    [19]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [20]

    Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 64 097501]

    [21]

    Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

  • [1]

    Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 64 137201]

    [2]

    Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350

    [3]

    Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502

    [4]

    Zhu T 2014 Chin. Phys. B 23 047504

    [5]

    Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201

    [6]

    Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409

    [7]

    Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203

    [8]

    Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508

    [9]

    Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504

    [10]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]

    [11]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [12]

    Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409

    [13]

    Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410

    [14]

    Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914

    [15]

    Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515

    [16]

    Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504

    [17]

    Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116

    [18]

    McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980

    [19]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [20]

    Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 64 097501]

    [21]

    Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724

  • [1] Liu Jun-Hang, Zhu Zhao-Zhao, Bi Lin-zhu, Wang Peng-Ju, Cai Jian-Wang. Magnetic properties and thermal stability of ultrathin TbFeCo films encapsulated by heavy metals Pt and W. Acta Physica Sinica, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] Hu Shi-Lin, Liu Jun-Hua, Deng Zhi-Xiong, Xiao Wen, Yang Zhan, Chen Kai, Liao Zhao-Liang. Anomalous Hall effect in Pt/La0.67Sr0.33MnO3 heterojunctions. Acta Physica Sinica, 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [3] Zhu Xin-Qiang, Wang Jian, Zhu Can, Luo Feng, Chen Shu-Quan, Xu Jia-Hui, Xu Feng, Wang Jia-Fu, Zhang Yan, Sun Zhi-Gang. Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal. Acta Physica Sinica, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [4] Liu Xiao-Wei, Xiong Jun-Lin, Wang Li-Zheng, Liang Shi-Jun, Cheng Bin, Miao Feng. Giant coercivity in single crystal Ta3FeS6 film. Acta Physica Sinica, 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [5] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [6] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [7] Yu Tao, Liu Yi, Zhu Zheng-Yong, Zhong Hui-Cai, Zhu Kai-Gui, Gou Cheng-Ling. Influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo. Acta Physica Sinica, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [8] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [9] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [10] Zheng Yong-Lin, Wang Xiao-Xi, Ge Ze-Ling, Guo Hong-Li, Yan Gang-Feng, Dai Song-Hui, Zhu Xiao-Ling, Tian Xiao-Bin. Transmission and application of electron spin wave function in alternating ferromagnetic and nonmagnetic layers. Acta Physica Sinica, 2013, 62(22): 227701. doi: 10.7498/aps.62.227701
    [11] Chen Xi, Liu Hou-Fang, Han Xiu-Feng, Ji Yang. The research of the perpendicular magnetic anisotropy in CoFeB/AlOx/Ta and AlOx/CoFeB/Ta structures. Acta Physica Sinica, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [12] Zhu Yun, Han Na. Research on enhanced perpendicular magnetic anisotropy in CoFe/Pd bilayer structure. Acta Physica Sinica, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [13] Wang Yi-Jun, Liu Yang, Yu Guang-Hua. Effect of Pt spacers on interface exchange coupling in ferromagnetic/antiferromagnetic bilayers. Acta Physica Sinica, 2012, 61(16): 167503. doi: 10.7498/aps.61.167503
    [14] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [15] Feng Chun, Zhan Qian, Li Bao-He, Teng Jiao, Li Ming-Hua, Jiang Yong, Yu Guang-Hua. Preparation of L10-FePt film for perpendicular magnetic recording media by using FePt/Au mutilayers. Acta Physica Sinica, 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [16] Fu Yan-Qiang, Liu Yang, Jin Chuan, Yu Guang-Hua. Effect of Pt spacers on the interface of Co/FeMn. Acta Physica Sinica, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [17] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [18] Hwang Pol, Li Bao-He, Yang Tao, Zhai Zhong-Hai, Zhu Feng-Wu. Correlation among magnetic properties, perpendicular magnetic recording properti es and microstructure of[Co8585Cr1515/Pt]2020 multilayers. Acta Physica Sinica, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [19] Lin Ying-Bin, Lai Heng, Huang Zhi-Gao, Du You-Wei. Numerical calculation of Kerr spectra for MnBi magnetic multilayered films. Acta Physica Sinica, 2004, 53(2): 606-613. doi: 10.7498/aps.53.606
    [20] Feng Qian, Huang Zhi-Gao, Du You-Wei. Monter-Carlo simulation of surface magnetism of multilayered films. Acta Physica Sinica, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
Metrics
  • Abstract views:  6331
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2015
  • Accepted Date:  05 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map