Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of ion temperature by ion-acoustic waves Landau damping in oxide cathode plasma

Hu Guang-Hai Jin Xiao-Li Zhang Qiao-Feng Xie Jin-Lin Liu Wan-Dong

Citation:

Measurement of ion temperature by ion-acoustic waves Landau damping in oxide cathode plasma

Hu Guang-Hai, Jin Xiao-Li, Zhang Qiao-Feng, Xie Jin-Lin, Liu Wan-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ion temperature is one of the fundamental plasma parameters, which is important for studying the plasma behavior and instabilities. The measurement of ion temperature is very difficult especially in a low temperature plasma. The traditional passive and active (laser induced fluorescence) spectral diagnostics are complex and expensive because of the low value of the ion temperature, while the resolution of the retarding energy analyzer is not fine enough to measure the small T_i. Here we utilize the method of ion acoustic wave Landau damping to measure the ion temperature in the linear magnetized plasma device, where the 2 meter long plasma column with 12 cm in diameter is produced by an indirectly heated oxide cathode plasma source. The device provides a wide range of plasma parameters for many fundamental issues of plasma research. The typical plasma density is 2×1017 m-3 and neutral argon pressure is 0.02 Pa. Discharge pulse length is 5.8 ms with a plateau period of 4.8 ms. Ion acoustic waves (IAWs) are excited via biased plane stainless mesh grid with a high transparency of 80%. The grid with 10 cm in diameter is located in the center of the device (1.5 m away from the plasma source), while its normal axis is parallel to the magnetic field lines. Ion acoustic waves are excited during the discharge pulse via the sine signals applied to the grid. The biasing peak-peak voltage is 12 V with frequencies of 800 kHz and 1 MHz. IAW is also excited with biasing voltage 24 V and frequency 800 kHz, while the experimental results exclude the existence of the ion burst mode. A movable Langmuir probe controlled by a step motor is used to measure the spatial evolution of the IAW along the magnetic field. Thus the damping length and the phase velocity of the IAW propagating in the magnetic field are measured under different conditions. The measured phase velocity is around 3200 m/s in plasma coordinate. The electron temperature is measured to be 2.9 eV resulting from the V-I curve of single probe. Based on the measured damping length, the ion temperature is measured to be 0.3 eV, which is very consistent with the results measured by spectral diagnostics on other similar linear machines.
      Corresponding author: Xie Jin-Lin, jlxie@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275200).
    [1]

    Mantica P, Angioni C, Challis C 2011 Phys. Rev. Lett. 107 135004

    [2]

    Zakeri-Khatir H, Aghamir F M 2015 Chin. Phys. B 24 25201

    [3]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111(in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 57 5111]

    [4]

    Hutchinson I H 2002 Principle of Plasma Diagnostics (2nd Ed.) (Cambridge: Cambridge University Press) pp240-267, pp65-66

    [5]

    Xiang Z L, Yu C X 1982 Principle of High Temperature Plasma Diagnostics (Shanghai: Shanghai Science and Technology Press) pp27-89 (in Chinese) [项志遴, 俞昌旋 1982 高温等离子体诊断技术 (上海: 上海科技出版社)第27–89页]

    [6]

    Guillermo D, Pablo M, Julio P 1986 Rev. Sci. Instrum. 57 1501

    [7]

    Stenzel R L, Williams R, Aguero R, Kitazaki K, Ling A, McDonald T, Spitzer J 1982 Rev. Sci. Instrum. 53 1027

    [8]

    Gulbrandsen N, Fredriksen A, Caër J, Scime E 2015 Phys. Plasmas 22 033505

    [9]

    Jaehnig K P, Fonck R J, Ida K, Powell E T 1985 Rev. Sci. Instrum. 56 865

    [10]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428

    [11]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2014 Rev. Sci. Instrum. 85 103503

    [12]

    Goeckner M J, Goree J 1989 J. Vac. Sci. Technol. A 7 977

    [13]

    Den Hartog E A, Persing H, Claude R W 1990 Appl. Phys. Lett. 57 661

    [14]

    Stefan R, Mats L, Peder R, Danijela R, Johan L, Sven M, Wei S 2001 Rev. Sci. Instrum. 72 4300

    [15]

    Sato T, de Kock L C J M, Winkel T H G A 1972 Plasma Phys. 15 921

    [16]

    Francis F C 1983 Plasma Physics and Controlled Fusion (2nd Ed.) (London: Springer) pp245-249

    [17]

    Alexeff I, Neidigh R V 1963 Phys. Rev. 129 516

    [18]

    Hirose A, Alexeff I, Jones W D 1970 Phys. Fluids 13 1290

    [19]

    Wong A Y, Motley R W, Angelo N D 1964 Phys.Rev 133 A436

    [20]

    Leneman D, Gekelman W, Maggs J 2006 Rev. Sci. Instrum. 77 015108

    [21]

    Gekelman W, Pfister H, Bamber J, Leneman D, Maggs J 1991 Rev. Sci. Instrum. 62 2875

    [22]

    Alfred Y W 1977 Introduction to Experimental Plasma Physics (Vol. 1) (London: Springer) pp79-139

    [23]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432(in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 58 8432]

    [24]

    Alexeff I, Jones W D, Lonngren K E 1968 Phys. Rev. Lett. 21 878

    [25]

    Estabrook K, widner M, Alexeff I, Jones W D 1971 Phys. Fluids 14 1792

    [26]

    Lonngren K E, Khazei M, Gabl E F, Bulson J M 1982 Plasma Phys. 24 1483

    [27]

    Gabl E F, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 799

    [28]

    Raychaudhuri S, Gabl E F, Tsikis E K, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 1451

    [29]

    Alexeff I, Jones W D 1967 Phys. Rev. Lett. 21 422

    [30]

    Francis F C 2003 IEEE-ICOPS Meetin Langmuir Probe Diagnostics Jeju Korea, June 5 2003

    [31]

    Michael A L , Allan J L 2005 Principles of Plasma Discharge and Materials Processing (2nd Ed.) (New Jercey: Wiley-Interscience) p77

    [32]

    Ma T C, Hu X W, Chen Y H 2011 The Physics of Plasma (Beijing: Science and Technology of China Press) pp343-347 (in Chinese) [马腾才, 胡希伟, 陈银华 2011 等离子体物理原理 (北京: 中国科学技术出版社) 第343–347页]

    [33]

    Boivin R F, Scime E E 2003 Rev. Sci. Instrum. 74 4352

    [34]

    David P 2009 Ph. D Dissertation (Los Angeles: University of California)

  • [1]

    Mantica P, Angioni C, Challis C 2011 Phys. Rev. Lett. 107 135004

    [2]

    Zakeri-Khatir H, Aghamir F M 2015 Chin. Phys. B 24 25201

    [3]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111(in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 57 5111]

    [4]

    Hutchinson I H 2002 Principle of Plasma Diagnostics (2nd Ed.) (Cambridge: Cambridge University Press) pp240-267, pp65-66

    [5]

    Xiang Z L, Yu C X 1982 Principle of High Temperature Plasma Diagnostics (Shanghai: Shanghai Science and Technology Press) pp27-89 (in Chinese) [项志遴, 俞昌旋 1982 高温等离子体诊断技术 (上海: 上海科技出版社)第27–89页]

    [6]

    Guillermo D, Pablo M, Julio P 1986 Rev. Sci. Instrum. 57 1501

    [7]

    Stenzel R L, Williams R, Aguero R, Kitazaki K, Ling A, McDonald T, Spitzer J 1982 Rev. Sci. Instrum. 53 1027

    [8]

    Gulbrandsen N, Fredriksen A, Caër J, Scime E 2015 Phys. Plasmas 22 033505

    [9]

    Jaehnig K P, Fonck R J, Ida K, Powell E T 1985 Rev. Sci. Instrum. 56 865

    [10]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428

    [11]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2014 Rev. Sci. Instrum. 85 103503

    [12]

    Goeckner M J, Goree J 1989 J. Vac. Sci. Technol. A 7 977

    [13]

    Den Hartog E A, Persing H, Claude R W 1990 Appl. Phys. Lett. 57 661

    [14]

    Stefan R, Mats L, Peder R, Danijela R, Johan L, Sven M, Wei S 2001 Rev. Sci. Instrum. 72 4300

    [15]

    Sato T, de Kock L C J M, Winkel T H G A 1972 Plasma Phys. 15 921

    [16]

    Francis F C 1983 Plasma Physics and Controlled Fusion (2nd Ed.) (London: Springer) pp245-249

    [17]

    Alexeff I, Neidigh R V 1963 Phys. Rev. 129 516

    [18]

    Hirose A, Alexeff I, Jones W D 1970 Phys. Fluids 13 1290

    [19]

    Wong A Y, Motley R W, Angelo N D 1964 Phys.Rev 133 A436

    [20]

    Leneman D, Gekelman W, Maggs J 2006 Rev. Sci. Instrum. 77 015108

    [21]

    Gekelman W, Pfister H, Bamber J, Leneman D, Maggs J 1991 Rev. Sci. Instrum. 62 2875

    [22]

    Alfred Y W 1977 Introduction to Experimental Plasma Physics (Vol. 1) (London: Springer) pp79-139

    [23]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432(in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 58 8432]

    [24]

    Alexeff I, Jones W D, Lonngren K E 1968 Phys. Rev. Lett. 21 878

    [25]

    Estabrook K, widner M, Alexeff I, Jones W D 1971 Phys. Fluids 14 1792

    [26]

    Lonngren K E, Khazei M, Gabl E F, Bulson J M 1982 Plasma Phys. 24 1483

    [27]

    Gabl E F, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 799

    [28]

    Raychaudhuri S, Gabl E F, Tsikis E K, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 1451

    [29]

    Alexeff I, Jones W D 1967 Phys. Rev. Lett. 21 422

    [30]

    Francis F C 2003 IEEE-ICOPS Meetin Langmuir Probe Diagnostics Jeju Korea, June 5 2003

    [31]

    Michael A L , Allan J L 2005 Principles of Plasma Discharge and Materials Processing (2nd Ed.) (New Jercey: Wiley-Interscience) p77

    [32]

    Ma T C, Hu X W, Chen Y H 2011 The Physics of Plasma (Beijing: Science and Technology of China Press) pp343-347 (in Chinese) [马腾才, 胡希伟, 陈银华 2011 等离子体物理原理 (北京: 中国科学技术出版社) 第343–347页]

    [33]

    Boivin R F, Scime E E 2003 Rev. Sci. Instrum. 74 4352

    [34]

    David P 2009 Ph. D Dissertation (Los Angeles: University of California)

  • [1] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng. Phase transitions of Na-ion layered oxide materials and their influence on properties. Acta Physica Sinica, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] Zhang Yong-Quan, Yao An-Quan, Yang Liu, Zhu Kai, Cao Dian-Xue. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries. Acta Physica Sinica, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [5] Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying. Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film. Acta Physica Sinica, 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [6] Zhao Jun-Ya, Li Chen-Xu, Ma Xiao-Dong. Landau damping and frequency-shift of (0, 0, 2) scissors mode in a disc-shaped Bose-Einstein condensate. Acta Physica Sinica, 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [7] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [8] Wang Jian-Yong, Cheng Xue-Ping, Zeng Ying, Zhang Yuan-Xiang, Ge Ning-Yi. Quasi-soliton solution of Korteweg-de Vries equation and its application in ion acoustic waves. Acta Physica Sinica, 2018, 67(11): 110201. doi: 10.7498/aps.67.20180094
    [9] Chai Zhao-Liang, Zhou Yu, Ma Xiao-Dong. Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(13): 130307. doi: 10.7498/aps.62.130307
    [10] Zhang Min, Wang Xiao-Xia, Luo Ji-Run, Liao Xian-Heng. Preparation and emission characteristic study of plasma-sprayed scandia-doped oxide cathode. Acta Physica Sinica, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [11] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [12] Wang Qi-Fu, Wang Xiao-Xia, Luo Ji-Run. Study of evaporation properties of a nano-particle carbonate cathode. Acta Physica Sinica, 2011, 60(3): 038502. doi: 10.7498/aps.60.038502
    [13] Wang Qi-Fu, Wang Xiao-Xia, Luo Ji-Run, Zhao Qing-Lan. Preparation of nano-particle carbonates emission materials. Acta Physica Sinica, 2010, 59(10): 7383-7389. doi: 10.7498/aps.59.7383
    [14] Wang Xiao-Xia, Liao Xian-Heng, Luo Ji-Run, Zhao Qing-Lan, Zhang Xiao-Wei. Lifetime of a new type of reservoir oxide cathode. Acta Physica Sinica, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [15] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [16] Wang Xiao-Xia, Liao Xian-Heng, Luo Ji-Run, Zhao Qing-Lan. Preparation and emission properties of a sub-micrometer carbonate emission material. Acta Physica Sinica, 2008, 57(3): 1924-1929. doi: 10.7498/aps.57.1924
    [17] ZHENG JIAN, LIU WAN-DONG, YU CHANG-XUAN. EFFECT OF ION-SOUND WAVES ON ELECTRON TRANSPORT. Acta Physica Sinica, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
    [18] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (Ⅱ)——NUMERICAL CALCULATION AND RESULTS DISCUSSION. Acta Physica Sinica, 1996, 45(2): 345-352. doi: 10.7498/aps.45.345
    [19] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (I)——ESTABLISHMENT OF THE MODEL. Acta Physica Sinica, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
    [20] ZHANG EN-QIU. THEORY OF THERMIONIC EMISSION (I)——A CRITICISM OF THE SEMI-CONDUCTOR MODEL OF THE OXIDE-COATED CATHODE. Acta Physica Sinica, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
Metrics
  • Abstract views:  6151
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2015
  • Accepted Date:  20 August 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map