搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移

柴兆亮 周昱 马晓栋

引用本文:
Citation:

雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移

柴兆亮, 周昱, 马晓栋

Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate

Chai Zhao-Liang, Zhou Yu, Ma Xiao-Dong
PDF
导出引用
  • 采用含时哈特里-福克-博戈留波夫近似研究雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移. 通过考虑元激发的实际弛豫及其各弛豫间的正交关系改进原有方法, 并由此给出计算朗道阻尼和频移的新公式. 此外, 令凝聚体边界处动能密度为零代替令基态能量极小以改进原消除三模耦合矩阵元的方法. 通过这些改进, 同时计算阻尼和频移, 并讨论它们的温度依赖, 所得理论结果都与实验符合.
    The Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate are investigated by using the time-dependent Hartree-Fock-Bogoliubov approximation. Improving the previous approach, We have taken into account the practical relaxations of elementary excitations and the orthogonal relation among them. With such an approach, we provide a new calculation formula for Landau damping rate and frequency-shift. In addition, our previous method of eliminating the divergence in three-mode coupling matrix elements is also improved by zeroing the kinetic energy at the condensate boundary instead of minimizing the ground-state energy. Based on these improvements, both the Landau damping rate and the frequency-shift of the monopole mode are analytically calculated and their temperature dependences are also discussed. And all the theoretical results are in agree meat with experimental data.
    • 基金项目: 国家自然科学基金(批准号: 10864006, 11047101, 11264039, 11205071);新疆高校科研计划重点项目(批准号: XJED2010141);新疆理论物理重点学科(批准号: LLWLY201106, LLWLY201107)和新疆师范大学研究生科技创新项目(批准号: 20111202, 20121214)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10864006, 11047101, 11264039, 11205071), the Key Research Project of Xinjiang Higher Education, China (Grant No. XJED2010141), the Key Discipline of Theoretical Physics of Xinjiang, China (Grant Nos. LLWLY201106, LLWLY201107), the Postgraduate Scientific and Technological Innovation Project of Xinjiang Normal University, China (Grant Nos. 20111202, 20121214).
    [1]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Edn.) (Cambridge University Press)

    [2]

    Stringari S 1996 Phys. Rev. Lett. 77 2360

    [3]

    Fetter A L 1996 Phys. Rev. A 53 4245

    [4]

    Ruprecht P A, Edwards M, Burnett K, Clark C W 1996 Phys. Rev. A 54 4178

    [5]

    Dalfovo F, Minniti C, Pitaevskii L P 1997 Phys. Rev. A 56 4855

    [6]

    Morgan S A, Choi S, Burnett K, Edwards M 1998 Phys. Rev. A 57 3818

    [7]

    Hechenblaikner G, Maragó O M, Hodby E, Arlt J, Hopkins S, Foot C J 2000 Phys. Rev. Lett. 85 692

    [8]

    Hodby E, Maragó O M, Hechenblaikner G, Foot C J 2001 Phys. Rev. Lett. 86 2196

    [9]

    Maragó O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikner G, Foot C J 2000 Phys. Rev. Lett. 84 2056

    [10]

    Khawaja U Al, Stoof H T C 2001 Phys. Rev. A 65 013605

    [11]

    Hechenblaikner G, Morgan S A, Hodby E, Maragó O M, Foot C J 2002 Phys. Rev. A 65 033612

    [12]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [13]

    Ma Y L, Chui S T 2002 Phys. Rev. A 65 053610

    [14]

    Hu B, Huang G, Ma Y L 2004 Phys. Rev. A 69 063608

    [15]

    Huang G, Szeftel J, Zhu S 2002 Phys. Rev. A 65 053605

    [16]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [17]

    Jin D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1997 Phys. Rev. Lett. 78 764

    [18]

    Jin D S, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1996 Phys. Rev. Lett. 77 420

    [19]

    Chevy F, Bretin V, Rosenbusch P, Madison K W, Dalibard J 2002 Phys. Rev. Lett. 88 250402

    [20]

    Stamper-Kurn D M, Miesner H J, Inouye S, Andrews M R, Ketterle W 1998 Phys.Rev. Lett. 81 500

    [21]

    Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E, Ketterle W 2000 Phys. Rev. Lett. 84 810

    [22]

    Maragó O, Hechenblaikner J, Hodby E, Foot C 2001 Phys. Rev. Lett. 86 3938

    [23]

    Mewes M O, Andrews M R, Druten N J V, Kurn D M, Durfee D S, Townsend C G, Ketterle W 1996 Phys. Rev. Lett. 77 988

    [24]

    Zaremba E, Griffin A, Nikuni T 1998 Phys. Rev. A 57 4695

    [25]

    Zaremba E, Nikuni T, Griffin A 1999 J. Low Temp. Phys. 116 277

    [26]

    Jackson B, Zaremba E 2002 Phys. Rev. Lett. 88 180402

    [27]

    Jackson B, Zaremba E 2002 Phys. Rev. Lett. 89 150402

    [28]

    Morgan S A, Rusch M, Hutchinson D A W, Burnett K 2003 Phys. Rev. Lett. 91 250403

    [29]

    Morgan S A 2004 Phys. Rev. A 69 023609

    [30]

    Giorgini S 1998 Phys. Rev. A 57 2949

    [31]

    Giorgini S 2000 Phys. Rev. A 61 063615

    [32]

    Pitaevskii L P, Stringari S 1997 Phys. Lett. A 235 398

    [33]

    Fedichev P O, Shlyapnikov G V, Walraven J T M 1998 Phys. Rev. Lett. 80 2269

    [34]

    Reidl J, Csordás A, Graham R, Szépfalusy P 2000 Phys. Rev. A 61 043606

    [35]

    Tsuchiya S, Griffin A 2005 Phys. Rev. A 72 053621

    [36]

    Guilleumas M, Pitaevskii L P 2003 Phys. Rev. A 67 053607

    [37]

    Guilleumas M, Pitaevskii L P 1999 Phys. Rev. A 61 013602

    [38]

    Ma X, Ma Y L, Huang G 2007 Phys. Rev. A 75 013628

    [39]

    Ma X, Zhou Y, Ma Y L, Huang G 2006 Chin. Phys. 15 1871

    [40]

    Ma X, Ma Y L, Huang G 2007 Chin. Phys. Lett. 24 616

    [41]

    Ma X, Yang Z, Lu J, Wei W 2011 Chin. Phys. B 20 070307

    [42]

    Yang Z, Chai Z, Li C, Ma X 2012 Commun. Theor. Phys. 57 789

  • [1]

    Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Edn.) (Cambridge University Press)

    [2]

    Stringari S 1996 Phys. Rev. Lett. 77 2360

    [3]

    Fetter A L 1996 Phys. Rev. A 53 4245

    [4]

    Ruprecht P A, Edwards M, Burnett K, Clark C W 1996 Phys. Rev. A 54 4178

    [5]

    Dalfovo F, Minniti C, Pitaevskii L P 1997 Phys. Rev. A 56 4855

    [6]

    Morgan S A, Choi S, Burnett K, Edwards M 1998 Phys. Rev. A 57 3818

    [7]

    Hechenblaikner G, Maragó O M, Hodby E, Arlt J, Hopkins S, Foot C J 2000 Phys. Rev. Lett. 85 692

    [8]

    Hodby E, Maragó O M, Hechenblaikner G, Foot C J 2001 Phys. Rev. Lett. 86 2196

    [9]

    Maragó O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikner G, Foot C J 2000 Phys. Rev. Lett. 84 2056

    [10]

    Khawaja U Al, Stoof H T C 2001 Phys. Rev. A 65 013605

    [11]

    Hechenblaikner G, Morgan S A, Hodby E, Maragó O M, Foot C J 2002 Phys. Rev. A 65 033612

    [12]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [13]

    Ma Y L, Chui S T 2002 Phys. Rev. A 65 053610

    [14]

    Hu B, Huang G, Ma Y L 2004 Phys. Rev. A 69 063608

    [15]

    Huang G, Szeftel J, Zhu S 2002 Phys. Rev. A 65 053605

    [16]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [17]

    Jin D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1997 Phys. Rev. Lett. 78 764

    [18]

    Jin D S, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1996 Phys. Rev. Lett. 77 420

    [19]

    Chevy F, Bretin V, Rosenbusch P, Madison K W, Dalibard J 2002 Phys. Rev. Lett. 88 250402

    [20]

    Stamper-Kurn D M, Miesner H J, Inouye S, Andrews M R, Ketterle W 1998 Phys.Rev. Lett. 81 500

    [21]

    Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E, Ketterle W 2000 Phys. Rev. Lett. 84 810

    [22]

    Maragó O, Hechenblaikner J, Hodby E, Foot C 2001 Phys. Rev. Lett. 86 3938

    [23]

    Mewes M O, Andrews M R, Druten N J V, Kurn D M, Durfee D S, Townsend C G, Ketterle W 1996 Phys. Rev. Lett. 77 988

    [24]

    Zaremba E, Griffin A, Nikuni T 1998 Phys. Rev. A 57 4695

    [25]

    Zaremba E, Nikuni T, Griffin A 1999 J. Low Temp. Phys. 116 277

    [26]

    Jackson B, Zaremba E 2002 Phys. Rev. Lett. 88 180402

    [27]

    Jackson B, Zaremba E 2002 Phys. Rev. Lett. 89 150402

    [28]

    Morgan S A, Rusch M, Hutchinson D A W, Burnett K 2003 Phys. Rev. Lett. 91 250403

    [29]

    Morgan S A 2004 Phys. Rev. A 69 023609

    [30]

    Giorgini S 1998 Phys. Rev. A 57 2949

    [31]

    Giorgini S 2000 Phys. Rev. A 61 063615

    [32]

    Pitaevskii L P, Stringari S 1997 Phys. Lett. A 235 398

    [33]

    Fedichev P O, Shlyapnikov G V, Walraven J T M 1998 Phys. Rev. Lett. 80 2269

    [34]

    Reidl J, Csordás A, Graham R, Szépfalusy P 2000 Phys. Rev. A 61 043606

    [35]

    Tsuchiya S, Griffin A 2005 Phys. Rev. A 72 053621

    [36]

    Guilleumas M, Pitaevskii L P 2003 Phys. Rev. A 67 053607

    [37]

    Guilleumas M, Pitaevskii L P 1999 Phys. Rev. A 61 013602

    [38]

    Ma X, Ma Y L, Huang G 2007 Phys. Rev. A 75 013628

    [39]

    Ma X, Zhou Y, Ma Y L, Huang G 2006 Chin. Phys. 15 1871

    [40]

    Ma X, Ma Y L, Huang G 2007 Chin. Phys. Lett. 24 616

    [41]

    Ma X, Yang Z, Lu J, Wei W 2011 Chin. Phys. B 20 070307

    [42]

    Yang Z, Chai Z, Li C, Ma X 2012 Commun. Theor. Phys. 57 789

  • [1] 邢健崇, 张文静, 杨涛. 玻色-爱因斯坦凝聚中的非正则涡旋态及其动力学.  , 2023, 72(10): 100306. doi: 10.7498/aps.72.20222289
    [2] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波.  , 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [3] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学.  , 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] 赵军亚, 李晨旭, 马晓栋. 碟形玻色-爱因斯坦凝聚体中(0, 0, 2)剪刀模的朗道阻尼和频移.  , 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [5] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [6] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [7] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究.  , 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [8] 张恒, 段文山. 二维玻色-爱因斯坦凝聚中孤立波的调制不稳定性.  , 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [9] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [10] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应.  , 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [11] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩.  , 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [12] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [13] 徐岩, 贾多杰, 李照鑫, 侯风超, 谭磊, 张鲁殷. 大N近似下旋量玻色-爱因斯坦凝聚的基态能级分裂.  , 2009, 58(1): 55-60. doi: 10.7498/aps.58.55
    [14] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制.  , 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [16] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [17] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据.  , 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [18] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [19] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应.  , 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [20] 徐 岩, 贾多杰, 李希国, 左 维, 李发伸. 大N近似下玻色-爱因斯坦凝聚体中单个涡旋态的解.  , 2004, 53(9): 2831-2834. doi: 10.7498/aps.53.2831
计量
  • 文章访问数:  7213
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-23
  • 修回日期:  2013-03-11
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map