搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铟锡氧化物薄膜表面等离子体损耗降低的研究

蔡昕旸 王新伟 张玉苹 王登魁 方铉 房丹 王晓华 魏志鹏

引用本文:
Citation:

铟锡氧化物薄膜表面等离子体损耗降低的研究

蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏

Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature

Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
导出引用
  • 本文采用直流磁控溅射方法在普通浮法玻璃基底上制备了立方多晶铁锰矿结构的铟锡氧化物(indium tin oxide,ITO)薄膜,并对其进行了结晶性、表面粗糙度、紫外-可见吸收光谱、折射率、介电常数及霍尔效应的测试.研究了溅射时基底温度的改变对于ITO薄膜的光电、表面等离子体性质的影响.随着基底温度由100℃升高至500℃,其光学带隙(3.643.97 eV)展宽,减少了电子带间跃迁的概率,有效降低了ITO薄膜的光学损耗.与此同时,对应ITO薄膜的载流子浓度(4.110202.481021 cm-3)与迁移率(24.632.2 cm2V-1s-1)得到提高,电学损耗明显降低.
    Indium tin oxide (ITO) thin films,as a heavy doping n-type semiconductor material with a high carrier concentration,can realize the surface plasma effect and regulation of surface plasmon resonance wavelength in the near infrared region:the surface plasma has broad application prospect in surface plasmon devices.The ITO thin films are deposited on float glass substrates (20 mm20 mm) via the direct current (DC) magnetron sputtering by regulating substrate temperature from 100 ℃ to 500 ℃.The deposited ITO thin films present a cubic polycrystalline iron manganese structure,in which the ITO film shows the strong crystallinity at 400 ℃,so that it is conducive to reducing the defects of bound electrons and the damping force of thin film.The surface roughness of ITO thin film first decreases and then increases with the temperature increasing,correspondingly the root-mean-square roughness (Rq) of these films decreases from 4.11~nm to 2.19 nm,then increases to 2.56 nm.The Rqvalue of 2.19 nm corresponds to a preferable surface smoothness of ITO thin film,indicating that it can effectively increase carrier concentration of ITO thin film at 400 ℃.The effects of the different substrate temperature on the photoelectric and surface plasma properties of ITO thin films are analyzed by UV-Vis absorption spectra,Hall measurement,refractive index and dielectric constant.As the temperature increases from 100 ℃ to 500 ℃,the carrier concentration of ITO thin film is enhanced from 4.11020 cm-3 to 2.481021 cm-3,and thus increasing the probability of the Fermi level to the conduction band of ITO thin film.And the enhancement of carrier concentration induces the Moss-Burstein effect,which makes the edges of absorption spectrum of the ITO thin film gradually blue-shift from 340 nm to 312 nm,correspondingly broadening the optical band gap from 3.64 eV to 3.97 eV.These results cause the difficulties of electrons interband transition to be enhanced,and thus suppressing the phenomenon of absorbing photons for the electron transition from low level to high level,which ultimately reduces the optical loss of ITO thin film.In addition,the surface plasma effect is realized in a range from 1100 nm to 1700 nm for ITO thin film by regulating the substrate temperature.Meanwhile,the electronic mobility in the ITO thin film is also improved from 24.6 cm2V-1s-1 to 32.2 cm2V-1s-1,which reduces the electronic scattering,and is beneficial to the increase of propagation length of surface plasma waves.The above results imply that we have attained the goal of the reducing the electrical loss of ITO thin film.
      通信作者: 王新伟, wxw4122@cust.edu.cn;fangdan19822011@163.com ; 房丹, wxw4122@cust.edu.cn;fangdan19822011@163.com
    • 基金项目: 国家自然科学基金(批准号:61404009,61504012)、吉林省科技发展计划(批准号:20170520118JH)和长春理工大学创新基金(批准号:XJJLG-2016-11)资助的课题.
      Corresponding author: Wang Xin-Wei, wxw4122@cust.edu.cn;fangdan19822011@163.com ; Fang Dan, wxw4122@cust.edu.cn;fangdan19822011@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61404009, 61504012), the Jilin Provincial Science and Technology Development Plan, China (Grant No. 20170520118JH), and the Innovation Fund of Changchun University of Science and Technology, China (Grant No. XJJLG2016-11).
    [1]

    Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577

    [2]

    Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381

    [3]

    Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494

    [4]

    Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250

    [5]

    Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117

    [6]

    Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533

    [7]

    Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846

    [8]

    Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]

    [9]

    Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056

    [10]

    Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839

    [11]

    Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402

    [12]

    Boltasseva A, Atwater H A 2011 Science 331 290

    [13]

    Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103

    [14]

    Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1

    [15]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [16]

    Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022

    [17]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211

    [18]

    Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021

    [19]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795

    [20]

    Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699

    [21]

    Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451

    [22]

    Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834

    [23]

    Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797

    [24]

    Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]

    [25]

    Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]

    [26]

    Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273

  • [1]

    Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577

    [2]

    Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381

    [3]

    Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494

    [4]

    Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250

    [5]

    Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117

    [6]

    Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533

    [7]

    Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846

    [8]

    Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]

    [9]

    Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056

    [10]

    Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839

    [11]

    Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402

    [12]

    Boltasseva A, Atwater H A 2011 Science 331 290

    [13]

    Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103

    [14]

    Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1

    [15]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [16]

    Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022

    [17]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211

    [18]

    Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021

    [19]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795

    [20]

    Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699

    [21]

    Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451

    [22]

    Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834

    [23]

    Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797

    [24]

    Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]

    [25]

    Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]

    [26]

    Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器.  , 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性.  , 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导.  , 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] 赵世平, 张鑫, 刘智慧, 王全, 王华林, 姜薇薇, 刘超前, 王楠, 刘世民, 崔云先, 马艳平, 丁万昱, 巨东英. 低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律.  , 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [5] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响.  , 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [6] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [7] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质.  , 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [8] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [9] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究.  , 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [10] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] 程木田. 经典光场相干控制金属纳米线表面等离子体传输.  , 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [12] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响.  , 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [13] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究.  , 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [14] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究.  , 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [15] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究.  , 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [16] 陈华, 汪力. 金属导线偶合THz表面等离子体波.  , 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [18] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应.  , 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [19] 尚淑珍, 邵建达, 范正修. 低损耗193 nm增透膜.  , 2008, 57(3): 1946-1950. doi: 10.7498/aps.57.1946
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器.  , 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  7150
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-24
  • 修回日期:  2018-06-11
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map