-
Indium tin oxide (ITO) thin films,as a heavy doping n-type semiconductor material with a high carrier concentration,can realize the surface plasma effect and regulation of surface plasmon resonance wavelength in the near infrared region:the surface plasma has broad application prospect in surface plasmon devices.The ITO thin films are deposited on float glass substrates (20 mm20 mm) via the direct current (DC) magnetron sputtering by regulating substrate temperature from 100 ℃ to 500 ℃.The deposited ITO thin films present a cubic polycrystalline iron manganese structure,in which the ITO film shows the strong crystallinity at 400 ℃,so that it is conducive to reducing the defects of bound electrons and the damping force of thin film.The surface roughness of ITO thin film first decreases and then increases with the temperature increasing,correspondingly the root-mean-square roughness (Rq) of these films decreases from 4.11~nm to 2.19 nm,then increases to 2.56 nm.The Rqvalue of 2.19 nm corresponds to a preferable surface smoothness of ITO thin film,indicating that it can effectively increase carrier concentration of ITO thin film at 400 ℃.The effects of the different substrate temperature on the photoelectric and surface plasma properties of ITO thin films are analyzed by UV-Vis absorption spectra,Hall measurement,refractive index and dielectric constant.As the temperature increases from 100 ℃ to 500 ℃,the carrier concentration of ITO thin film is enhanced from 4.11020 cm-3 to 2.481021 cm-3,and thus increasing the probability of the Fermi level to the conduction band of ITO thin film.And the enhancement of carrier concentration induces the Moss-Burstein effect,which makes the edges of absorption spectrum of the ITO thin film gradually blue-shift from 340 nm to 312 nm,correspondingly broadening the optical band gap from 3.64 eV to 3.97 eV.These results cause the difficulties of electrons interband transition to be enhanced,and thus suppressing the phenomenon of absorbing photons for the electron transition from low level to high level,which ultimately reduces the optical loss of ITO thin film.In addition,the surface plasma effect is realized in a range from 1100 nm to 1700 nm for ITO thin film by regulating the substrate temperature.Meanwhile,the electronic mobility in the ITO thin film is also improved from 24.6 cm2V-1s-1 to 32.2 cm2V-1s-1,which reduces the electronic scattering,and is beneficial to the increase of propagation length of surface plasma waves.The above results imply that we have attained the goal of the reducing the electrical loss of ITO thin film.
-
Keywords:
- surface plasmas /
- indium tin oxide /
- optical loss /
- electrical loss
[1] Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577
[2] Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381
[3] Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494
[4] Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250
[5] Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117
[6] Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533
[7] Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846
[8] Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]
[9] Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056
[10] Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839
[11] Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402
[12] Boltasseva A, Atwater H A 2011 Science 331 290
[13] Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103
[14] Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1
[15] Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102
[16] Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022
[17] Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211
[18] Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021
[19] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795
[20] Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699
[21] Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451
[22] Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834
[23] Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797
[24] Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]
[25] Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]
[26] Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273
-
[1] Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577
[2] Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381
[3] Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494
[4] Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250
[5] Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117
[6] Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533
[7] Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846
[8] Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]
[9] Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056
[10] Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839
[11] Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402
[12] Boltasseva A, Atwater H A 2011 Science 331 290
[13] Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103
[14] Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1
[15] Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102
[16] Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022
[17] Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211
[18] Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021
[19] West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795
[20] Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699
[21] Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451
[22] Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834
[23] Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797
[24] Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]
[25] Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]
[26] Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273
Catalog
Metrics
- Abstract views: 7151
- PDF Downloads: 131
- Cited By: 0