Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature

Cai Xin-Yang Wang Xin-Wei Zhang Yu-Ping Wang Deng-Kui Fang Xuan Fang Dan Wang Xiao-Hua Wei Zhi-Peng

Citation:

Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature

Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Indium tin oxide (ITO) thin films,as a heavy doping n-type semiconductor material with a high carrier concentration,can realize the surface plasma effect and regulation of surface plasmon resonance wavelength in the near infrared region:the surface plasma has broad application prospect in surface plasmon devices.The ITO thin films are deposited on float glass substrates (20 mm20 mm) via the direct current (DC) magnetron sputtering by regulating substrate temperature from 100 ℃ to 500 ℃.The deposited ITO thin films present a cubic polycrystalline iron manganese structure,in which the ITO film shows the strong crystallinity at 400 ℃,so that it is conducive to reducing the defects of bound electrons and the damping force of thin film.The surface roughness of ITO thin film first decreases and then increases with the temperature increasing,correspondingly the root-mean-square roughness (Rq) of these films decreases from 4.11~nm to 2.19 nm,then increases to 2.56 nm.The Rqvalue of 2.19 nm corresponds to a preferable surface smoothness of ITO thin film,indicating that it can effectively increase carrier concentration of ITO thin film at 400 ℃.The effects of the different substrate temperature on the photoelectric and surface plasma properties of ITO thin films are analyzed by UV-Vis absorption spectra,Hall measurement,refractive index and dielectric constant.As the temperature increases from 100 ℃ to 500 ℃,the carrier concentration of ITO thin film is enhanced from 4.11020 cm-3 to 2.481021 cm-3,and thus increasing the probability of the Fermi level to the conduction band of ITO thin film.And the enhancement of carrier concentration induces the Moss-Burstein effect,which makes the edges of absorption spectrum of the ITO thin film gradually blue-shift from 340 nm to 312 nm,correspondingly broadening the optical band gap from 3.64 eV to 3.97 eV.These results cause the difficulties of electrons interband transition to be enhanced,and thus suppressing the phenomenon of absorbing photons for the electron transition from low level to high level,which ultimately reduces the optical loss of ITO thin film.In addition,the surface plasma effect is realized in a range from 1100 nm to 1700 nm for ITO thin film by regulating the substrate temperature.Meanwhile,the electronic mobility in the ITO thin film is also improved from 24.6 cm2V-1s-1 to 32.2 cm2V-1s-1,which reduces the electronic scattering,and is beneficial to the increase of propagation length of surface plasma waves.The above results imply that we have attained the goal of the reducing the electrical loss of ITO thin film.
      Corresponding author: Wang Xin-Wei, wxw4122@cust.edu.cn;fangdan19822011@163.com ; Fang Dan, wxw4122@cust.edu.cn;fangdan19822011@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61404009, 61504012), the Jilin Provincial Science and Technology Development Plan, China (Grant No. 20170520118JH), and the Innovation Fund of Changchun University of Science and Technology, China (Grant No. XJJLG2016-11).
    [1]

    Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577

    [2]

    Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381

    [3]

    Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494

    [4]

    Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250

    [5]

    Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117

    [6]

    Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533

    [7]

    Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846

    [8]

    Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]

    [9]

    Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056

    [10]

    Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839

    [11]

    Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402

    [12]

    Boltasseva A, Atwater H A 2011 Science 331 290

    [13]

    Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103

    [14]

    Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1

    [15]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [16]

    Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022

    [17]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211

    [18]

    Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021

    [19]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795

    [20]

    Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699

    [21]

    Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451

    [22]

    Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834

    [23]

    Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797

    [24]

    Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]

    [25]

    Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]

    [26]

    Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273

  • [1]

    Zhang Y, Zhang B, Ye X, Yan Y Q, Huang L H, Jiang Z Y, Tan S Z, Cai X 2016 Mat. Sci. Eng.: C 59 577

    [2]

    Vaishnav V S, Patel S G, Panchal J N 2015 Sensor Actuat B: Chem. 206 381

    [3]

    Lee J, Jung B J, Lee J I, Chu H Y, Do L M, Shim H K 2002 J. Mater. Chem. 12 3494

    [4]

    Gwamuri J, Vora A, Mayandi J, Gney D, Bergstromb P L, Pearce J M 2016 Sol. Energ. Mat. Sol. C 149 250

    [5]

    Zhao S, Guo Y, Song S, Choi D, Hahm J 2012 Appl. Phys. Lett. 101 053117

    [6]

    Yasuhara R, Murai S, Fujita K, Tanaka K 2012 Phys. Status Solidi C 9 2533

    [7]

    Verma R K, Gupta B D 2010 J. Opt. Soc. Am. A 27 846

    [8]

    Wang X Y, Wang Y, Qin X, Yan X N, Zhang H F, He Y, Bai L H 2016 Laser Optoelectron. Prog. 53 052401 (in Chinese) [王晓艳, 王燕, 秦雪, 阎晓娜, 张惠芳, 何英, 白丽华 2016 激光与光电子学进展 53 052401]

    [9]

    Kamakura R, Fujita K, Murai S, Tanakaet K 2015 J. Phys.: Conf. Ser. 619 012056

    [10]

    Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F 2009 Opt. Lett. 34 839

    [11]

    Li L, Hao H, Zhao H 2017 Mater. Res. Express 4 016402

    [12]

    Boltasseva A, Atwater H A 2011 Science 331 290

    [13]

    Kim H, Osofsky M, Prokes S M, Glembocki O J, Piqué A 2013 Appl. Phys. Lett. 102 171103

    [14]

    Yang Y, Miller O, Christensen T, Joannopoulos J D, Soljacicet M 2017 Nano Lett. 7 1

    [15]

    Bobb D A, Zhu G, Mayy M, Gavrilenko A V, Mead P, Gavrilenko V I, Noginov M A 2009 Appl. Phys. Lett. 95 151102

    [16]

    Noginov M A, Zhu G, Bahoura M, Adegoke J, Small C E 2006 Opt. Lett. 31 3022

    [17]

    Blaber M G, Arnold M D, Ford M J 2009 J. Phys.: Condens. Matter 21 144211

    [18]

    Kim H, Horwitz J S, Kushto G, Piqué A, Kafafi Z H, Gilmore C M, Chrisey D B 2000 J. Appl. Phys. 88 6021

    [19]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photon Rev. 4 795

    [20]

    Kim E, Lee B S, Bae J S, Kimb J P, Cho S J 2011 J. Ceram Process. Res. 12 699

    [21]

    Kim H, Gilmore C M, Piqué A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B 1999 J. Appl. Phys. 86 6451

    [22]

    Naik G V, Liu J, Kildishev A V, Shalaevab M V, Boltassevaa A 2012 Proc. Natl. Acad. Sci. USA 109 8834

    [23]

    Blažek D, Pištora J, Michael Č 2016 J. Nanosci. Nanotechnol. 16 7797

    [24]

    Peng S, Jiang J W, Li G, Zhang K X, Yang Y, Yao T T, Jin K W, Cao X, Xu G B, Wang Y 2016 J. Chin. Ceram. Soc. 44 987 (in Chinese) [彭寿, 蒋继文, 李刚, 张宽翔, 杨勇, 姚婷婷, 金克武, 曹欣, 徐根保, 王芸 2016 硅酸盐学报 44 987]

    [25]

    Cai X Y, Wang X W, Li R X, Wang D K, Fang X, Fang D, Zhang Y P, Sun X P, Wang X H, Wei Z P 2018 Laser Optoelectron. Prog. 55 051602 (in Chinese) [蔡昕旸, 王新伟, 李如雪, 王登魁, 方铉, 房丹, 张玉苹, 孙秀平, 王晓华, 魏志鹏 2018 激光与光电子学展 55 051602]

    [26]

    Kulkarni A K, Schulz K H, Lim T S, Khanet M 1999 Thin Solid Film 345 273

  • [1] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang. A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss. Acta Physica Sinica, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [4] Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying. Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film. Acta Physica Sinica, 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [5] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [6] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [7] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [8] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [9] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [10] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [12] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [13] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [14] Song Guo-Feng, Zhang Yu, Guo Bao-Shan, Wang Wei-Min. Single mode vertical-cavity surface emitting laser with surface plasmon nanostructure. Acta Physica Sinica, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [15] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [16] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [18] Hua Lei, Song Guo-Feng, Guo Bao-Shan, Wang Wei-Min, Zhang Yu. Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons. Acta Physica Sinica, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [19] Shang Shu-Zhen, Shao Jian-Da, Fan Zheng-Xiu. Low-loss 193nm anti_reflection coatings. Acta Physica Sinica, 2008, 57(3): 1946-1950. doi: 10.7498/aps.57.1946
    [20] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
Metrics
  • Abstract views:  7151
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2018
  • Accepted Date:  11 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map