Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride

Zhang Wen-Ping Ma Zhong-Yuan Xu Jun Xu Ling Li Wei Chen Kun-Ji Huang Xin-Fan Feng Duan

Citation:

Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride

Zhang Wen-Ping, Ma Zhong-Yuan, Xu Jun, Xu Ling, Li Wei, Chen Kun-Ji, Huang Xin-Fan, Feng Duan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoarrays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the excitation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46104 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.
      Corresponding author: Ma Zhong-Yuan, zyma@nju.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB934402, 2013CB632101), the National Nature Science Foundation of China (Grant Nos. 61071008, 61376004, 11374143), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130091110024), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1095021030, 1116021004, 1114021005), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516

    [2]

    Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]

    [3]

    Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602

    [4]

    Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106

    [5]

    Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100

    [6]

    Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102

    [7]

    Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111

    [8]

    Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322

    [9]

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]

    [10]

    Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460

    [11]

    Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880

    [12]

    Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392

    [13]

    Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01

    [14]

    Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574

    [15]

    Potrick K, Huisken F 2014 Physical Review B 91 125306

    [16]

    Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103

    [17]

    Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180

    [18]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668

    [19]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [20]

    Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957

    [21]

    Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372

    [22]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]

    [23]

    Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295

    [24]

    Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134

  • [1]

    Ma Z Y, Chen K J, Huang X F, Xu J, Zhu D, Mei J X, Qiao F, Feng D 2004 Appl. Phys. Lett. 85 516

    [2]

    Hu M Z, Zhou S Y, Han Q, Sun H, Zhou L P, Zeng C M, Wu Z F, Wu X M 2014 Acta Phys. Sin. 63 029501 (in Chinese) [胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅 2014 63 029501]

    [3]

    Dong H P, Chen K J, Zhang P Z, Li W, Xu J, Ma Z Y, Sun Z F, Liu Z Y 2014 Canadian Journal of Physics 92 602

    [4]

    Ma Z Y, Yan M Y, Jiang X F, Yang H F, Xia G Y, Ni X D, Lin T, Li W, Xu L, Chen K J, Huang X F, Feng D 2012 Appl. Phys. Lett. 101 013106

    [5]

    Kim B H, Cho C H, Mun J S, Kwon M K, Park T Y, Kim J S, Byeon C, Lee J, Park S 2008 Advanced Materials 20 3100

    [6]

    Pillai S, Catchpole K R, Trupke T, Zhang G, Zhao J, Green M A 2006 Appl. Phys. Lett. 88 161102

    [7]

    Henson J, DiMariia J, Paiella R 2009 Journal of Appl. Phys. 106 093111

    [8]

    Henson J, Dimakis E, Dimaria J, Li R, Minissale S, Negro L D, Moustakas T D, Paiella R 2010 Optics Express 18 21322

    [9]

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802 (in Chinese) [魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 63 217802]

    [10]

    Lu C H, Wu S E, Lai Y L, Li Y L, Liu C P 2014 Journal of Alloys and Compounds 585 460

    [11]

    Das R, Phadke P, Khichar N, Chawla S 2014 Journal of Material and Chemistry C 2 8880

    [12]

    Fadil A, Lida D, Chen Y T, Ma J, Ou Y Y, Ou H Y, Petersen P M, Ou H Y 2014 Scientific Report 4 6392

    [13]

    Kuo Y, Lin C H, Chen H S, Hsieh C, Tu C G, Shih P Y, Chen C H, Liao C H, Su C Y, Yao Y F, Chen H T, Kiang Y W, Yang C C 2015 Japanese Journal of Applied Physics 54 02BD01

    [14]

    Zang Y S, He X, Li J, Yin J, Li K Y, Yue C, Wu Z M, Wu S T, Kang J Y 2013 Nanoscale 5 574

    [15]

    Potrick K, Huisken F 2014 Physical Review B 91 125306

    [16]

    Sahu G, Sahu V, Kukreja L M 2014 Journal of Applied Physics 115 083103

    [17]

    Ma Z Y, Ni X D, Zhang W P, Jiang X F, Yang H F, Yu J, Wang W, Xu J, Xu L, Chen K J, Feng D 2014 Optical Express 22 28180

    [18]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 Journal of Physical Chemistry B 107 668

    [19]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [20]

    Evanoff D E, Chumanov G 2004 Journal of Physical Chemistry B 108 13957

    [21]

    Biteen J S, Sweatlock L A, Mertens H, Lewis N S, Polman A, Atwater H A 2007 Journal of Physical Chemistry C 111 13372

    [22]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 61 047802]

    [23]

    Jensen T R, Kelly L, Lazarides A, Schatz G 1999 Journal of Cluster Science 10 295

    [24]

    Chen F Y, Negash A, Johnston R L 2011 Advances 1 032134

  • [1] Wang Yin-Xia, Bai Xiao-Chuan, Zhang Yong, Li Guo-Qing. Influence of high-frequency localized surface plasmon polariton effect of Al nanoparticles on luminescence efficiency of deep-blue BCzVBi OLED. Acta Physica Sinica, 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [5] Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210855
    [6] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [7] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [8] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan. Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder. Acta Physica Sinica, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [10] Li Ai-Yun, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Fano resonances in symmetric gold nanorod trimers. Acta Physica Sinica, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [11] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [13] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [14] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [15] Wang Pei-Pei, Yang Chao-Jie, Li Jie, Tang Peng, Lin Feng, Zhu Xing. Polarization properties of plasmonic color filters comprised of arrays of subwavelength size holes on Au films. Acta Physica Sinica, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [16] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [18] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] Jiang Shuang-Feng, Kong Fan-Min, Li Kang, Gao Hui. Study of far-field directivity of optical dipole antenna. Acta Physica Sinica, 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
Metrics
  • Abstract views:  6875
  • PDF Downloads:  298
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2015
  • Accepted Date:  13 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map