搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光偶极天线的远场方向性研究

蒋双凤 孔凡敏 李康 高晖

引用本文:
Citation:

光偶极天线的远场方向性研究

蒋双凤, 孔凡敏, 李康, 高晖

Study of far-field directivity of optical dipole antenna

Jiang Shuang-Feng, Kong Fan-Min, Li Kang, Gao Hui
PDF
导出引用
  • 用时域有限差分方法模拟了两种光偶极天线模型的场分布,研究了光偶极天线的远场辐射特性随其长度增加而变化的规律以及影响其远场方向性的因素,发现光偶极天线的远场方向性随其长度增加而变化的规律类似于经典对称振子天线的相应规律.但高阶局域表面等离激元模式的存在使得光偶极天线的远场辐射图更快地出现了旁瓣.这些发现对于提高光天线的性能具有重要意义.
    By simulating the field distributions of two optical dipole antenna models with the finite-difference time-domain (FDTD) method, the variation regularity of their far-field radiation with their length increasing and the factors which can influence their far-field directivity are studied. The results show that the variation regularity of optical dipole antenna is analogous to that of classic symmetrical dipole antenna. But in the far-field directivity plot of optical dipole antenna, side-lobes occur much more quickly, owing to the existence of high-order localized surface plasmon modes. These results hold a significant promise of improving the performance of optical antennas.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB930503, 2009CB930501,2007CB613203),国家教育部留学回国人员科研启动基金和山东省优秀中青年科学家科研奖励基金(批准号:BS2009NJ002)资助的课题.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Xue W R, Guo Y N, Zhang W M 2010 Chin. Phys. B 19 017302

    [3]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [4]

    Cao L R, Geng W D, Huang Q, Sun J, Wang J, Xiong S Z, Zhang X D, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [曹丽冉、耿卫东、黄 茜、孙 建、王 京、熊绍珍、张晓丹、赵 颖 2009 58 1980]

    [5]

    Bai W L, Cai L K, Gan Q Q, Guo B S, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理、蔡利康、甘巧强、 郭宝山、宋国峰 58 8021] 〖6] Wang J Q, Liang H M, Fang L, Li M, Niu X, Du J L 2009 Chin. Phys. B 18 4870

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Kneipp K, Wang Y, Kneipp H, Perelman L T,Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667

    [8]

    Lee K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [9]

    Haes A J, Van Duyne H, R P 2002 J. Am. Chem. Soc. 124 10596

    [10]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [11]

    Anderson N, Bouhelier A, Novotny L 2006 J. Opt. A:Pure Appl. Opt. 8 227

    [12]

    Huang C, Bouhelier A, France G C d, Bruyant A, Guenot A, Finot E, Weeber J C, Dereux A 2008 Phys. Rev. B 78 155407

    [13]

    Li J J, Salandrino A, Engheta N 2007 Phys. Rev. B 76 245403

    [14]

    Brongersma M L 2008 Nature Photonics 2 270

    [15]

    Xie H, Kong F M, Li K 2009 Journal of Electromagnetic Waves and Aplications 23 535

    [16]

    Crozier K B, Sundaramurthy A, Kino G S 2003 J. App. Phys. 94 4632

    [17]

    Robert D G, Daniel E P 1997 Appl. Phys. Lett. 70 1354

    [18]

    Rogobete L, Kaminski F, Agio M, Sandoghdar V 2007 Opt. Lett. 32 1623

    [19]

    Wang J Y, Wu Z Y, Yang Y T 2010 Acta Phys. Sin. 59 1890 (in Chinese) [汪家友、吴振宇、杨银堂 2010 59 1890]

    [20]

    Mohammadi A, Sandoghdar V, Agio M 2008 New J. Phys. 10 105015

    [21]

    Chen C, Xu Y M, Zhao G W 2007 Acta Phys. Sin. 56 5298 (in Chinese) [陈 诚、徐跃民、赵国伟 2007 56 5298]

    [22]

    Huang Y, Boyle K 2008 Antennas: From Theory to Practice p129

    [23]

    Taminiau T H, Stefani F D, Hulst N F V 2008 New J. Phys. 10 105005

    [24]

    Johnson P B, Christy R W 1972 Phys. Rev. B 12 4370

    [25]

    Yee K 1996 IEEE Trans. Antennas Propag. 3 302

    [26]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-difference time-domain Method (Boston: Artech House)

    [27]

    Berenger J P 1996 J. Comput. Phys. 127 363

    [28]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [29]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, VanDuyne R P 2006 Nano Lett. 6 2060

    [30]

    Yang J, Zhang J, Wu X, Gong Q 2005 Opt. Express 15 16852

    [31]

    Muskens O L, Giannini V, G'omez Rivas. 2007 J. Opt. Express. 15 17736

    [32]

    Hohenau R, Krenn, Schider G, Ditlbacher H, Leitner A, Aussenegg F R, Schaich W L 2005 Euro. Phys. Lett. 69 538

    [33]

    Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schier G, Salerno M, Leiter A, Aussenegg F R 2005 Phys. Rev. Lett. 95 257403

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Xue W R, Guo Y N, Zhang W M 2010 Chin. Phys. B 19 017302

    [3]

    Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N, Bai L H 2010 Chin. Phys. B 19 027301

    [4]

    Cao L R, Geng W D, Huang Q, Sun J, Wang J, Xiong S Z, Zhang X D, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [曹丽冉、耿卫东、黄 茜、孙 建、王 京、熊绍珍、张晓丹、赵 颖 2009 58 1980]

    [5]

    Bai W L, Cai L K, Gan Q Q, Guo B S, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理、蔡利康、甘巧强、 郭宝山、宋国峰 58 8021] 〖6] Wang J Q, Liang H M, Fang L, Li M, Niu X, Du J L 2009 Chin. Phys. B 18 4870

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Kneipp K, Wang Y, Kneipp H, Perelman L T,Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667

    [8]

    Lee K S, El-Sayed M A 2006 J. Phys. Chem. B 110 19220

    [9]

    Haes A J, Van Duyne H, R P 2002 J. Am. Chem. Soc. 124 10596

    [10]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [11]

    Anderson N, Bouhelier A, Novotny L 2006 J. Opt. A:Pure Appl. Opt. 8 227

    [12]

    Huang C, Bouhelier A, France G C d, Bruyant A, Guenot A, Finot E, Weeber J C, Dereux A 2008 Phys. Rev. B 78 155407

    [13]

    Li J J, Salandrino A, Engheta N 2007 Phys. Rev. B 76 245403

    [14]

    Brongersma M L 2008 Nature Photonics 2 270

    [15]

    Xie H, Kong F M, Li K 2009 Journal of Electromagnetic Waves and Aplications 23 535

    [16]

    Crozier K B, Sundaramurthy A, Kino G S 2003 J. App. Phys. 94 4632

    [17]

    Robert D G, Daniel E P 1997 Appl. Phys. Lett. 70 1354

    [18]

    Rogobete L, Kaminski F, Agio M, Sandoghdar V 2007 Opt. Lett. 32 1623

    [19]

    Wang J Y, Wu Z Y, Yang Y T 2010 Acta Phys. Sin. 59 1890 (in Chinese) [汪家友、吴振宇、杨银堂 2010 59 1890]

    [20]

    Mohammadi A, Sandoghdar V, Agio M 2008 New J. Phys. 10 105015

    [21]

    Chen C, Xu Y M, Zhao G W 2007 Acta Phys. Sin. 56 5298 (in Chinese) [陈 诚、徐跃民、赵国伟 2007 56 5298]

    [22]

    Huang Y, Boyle K 2008 Antennas: From Theory to Practice p129

    [23]

    Taminiau T H, Stefani F D, Hulst N F V 2008 New J. Phys. 10 105005

    [24]

    Johnson P B, Christy R W 1972 Phys. Rev. B 12 4370

    [25]

    Yee K 1996 IEEE Trans. Antennas Propag. 3 302

    [26]

    Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-difference time-domain Method (Boston: Artech House)

    [27]

    Berenger J P 1996 J. Comput. Phys. 127 363

    [28]

    Berenger J P 1994 J. Comput. Phys. 114 185

    [29]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, VanDuyne R P 2006 Nano Lett. 6 2060

    [30]

    Yang J, Zhang J, Wu X, Gong Q 2005 Opt. Express 15 16852

    [31]

    Muskens O L, Giannini V, G'omez Rivas. 2007 J. Opt. Express. 15 17736

    [32]

    Hohenau R, Krenn, Schider G, Ditlbacher H, Leitner A, Aussenegg F R, Schaich W L 2005 Euro. Phys. Lett. 69 538

    [33]

    Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schier G, Salerno M, Leiter A, Aussenegg F R 2005 Phys. Rev. Lett. 95 257403

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平. 超紧凑硅基混合表面等离激元光场窄化器件的实验研究.  , 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [6] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究.  , 2021, (): . doi: 10.7498/aps.70.20210855
    [7] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [8] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究.  , 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [9] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [10] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器.  , 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [11] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应.  , 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [12] 张文平, 马忠元, 徐骏, 徐岭, 李伟, 陈坤基, 黄信凡, 冯端. 纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真.  , 2015, 64(17): 177301. doi: 10.7498/aps.64.177301
    [13] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式.  , 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [14] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质.  , 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [15] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [16] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制.  , 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [18] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [19] 曲士良, 宋瑛林, 杜池敏, 王玉晓, 高亚臣, 刘树田, 李玉良, 朱道本. 基于富勒烯C60结构体系的金纳米粒子合成物光学非线性研究.  , 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
    [20] 侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉. 高定向石墨表面金纳米粒子和金纳米线的研究.  , 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
计量
  • 文章访问数:  9943
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-18
  • 修回日期:  2010-05-26
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map