-
ZnO micro/nanowires were synthesized by chemical vapor deposition method. The morphology and structure of the products have been characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL) and micro-Raman scattering spectrometer, etc. Results show that the surface of the highly uniform ZnO wire is smooth and the as-synthesized ZnO wires show high crystal quality. Three types of UV detector are constructed using a single ZnO nanowire with different contact characteristics, and their corresponding performances are investigated systematically by using Keithley 4200-SCS and other equipments. All of the three different devices exhibit good rectifying characters and significant responsivity to ultraviolet light. The devices show self-driven features at zero bias. Compared with the devices made from Schottky contact and ZnO/PEDOT:PSS film, the present single ZnO nanowire/p-Si film devices with heterojunctions have the best self-powered function, which can be attributed to the stronger built-in electric field as well as the smaller dark current due to the insulating layer on the p-Si film. At zero bias, the fabricated ZnO nanowire/p-Si film device can deliver a dark current of 1.210-3 nA and a high photosensitivity of about 4.5103 under UV illumination. The response of the devices made from ZnO nanowire/p-Si film to UV illumination in air is pretty fast with the rise time of about 0.7 s and the fall time of about 1 s, which could be attributed to the fact that the photo-generated electron-hole pairs in the depletion layer is quickly separated by the built-in electric field, leading to a rapid response speed and a larger photocurrent. Comparison among the three kinds of devices indicates that the devices made from ZnO nanowire/p-Si film are the best candidate for UV detectors.
-
Keywords:
- ZnO nanowire /
- Schottky contact /
- pn heterojunction /
- UV detector
[1] Lee C H, Kim Y J, Lee J, Hong Y J, Jeon J M, Kim M, Hong S, Yi G C 2011 Nanotechnology 22 055205
[2] Jang E S, Won J H, Kim Y W, Chen X Y, Choy J H 2010 Cryst. Eng. Comm. 12 3467
[3] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[4] Liu R B, Zou B S 2011 Chin. Phys. B 20 047104
[5] Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103
[6] Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 83
[7] Dai Y, Zhang Y, Bai Y Q, Wang Z L 2003 Chem. Phys. Lett. 375 96
[8] Chen H S, Qi J J, Zhang Y, Zhang X M, Liao Q L, Huang Y H 2007 Appl. Surf. Sci. 253 8901
[9] Wang Z L, Poncharal P, De Heer W A 2000 Pure appl. Chem. 72 209
[10] Poncharal P, Wang Z L, Ugarte D 1999 Sci. 283 1513
[11] Heo Y W, Tien L C, Norton D P 2004 Appl. Phys. Lett. 85 2002
[12] Yang Y, Qi J J, Liao Q L 2009 Appl. Phys. Lett. 95 123112
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003
[14] Jha S K, Liu C P, Chen Z H, Chen K J, Bello I, Zapien J A, Zhang W J, Lee S T 2010 J. Phys. Chem. C 114 7999
[15] Lin W, Yan X, Zhang X 2011 Solid State Commun. 151 1860
[16] Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]
[17] Yang Y, Guo W, Qi J, Zhang Y 2010 Appl. Phys. Lett. 97 223113
[18] Bai Z M, Yan X Q, Chen X, Liu H S, Shen Y W, Zhang Y 2013 Curr. Appl. Phys. 13 165
[19] Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D J, Wang Z L 2009 Appl. Phys. Len. 94 191103
[20] Kamiya T, Tajima K, Nomura K 2008 Phys. Status Solidi 205 1929
[21] Wu C X, Zhou M, Feng C C, Yuan R, Li G, Ma W W, Cai L 2008 Acta Phys. Sin. 57 3887 (in Chinese) [吴春霞, 周明, 冯程程, 袁润, 李刚, 马伟伟, 蔡兰 2008 57 3887]
[22] Chen K J, Hung F Y, Chang S J, Young S J 2009 J. Alloy Compd 479 674
[23] Fang F, Zhao D X, Li B H, Zhang Z Z, Shen D Z, Wang X H 2010 J. Phys. Chem. C 114 12477
-
[1] Lee C H, Kim Y J, Lee J, Hong Y J, Jeon J M, Kim M, Hong S, Yi G C 2011 Nanotechnology 22 055205
[2] Jang E S, Won J H, Kim Y W, Chen X Y, Choy J H 2010 Cryst. Eng. Comm. 12 3467
[3] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[4] Liu R B, Zou B S 2011 Chin. Phys. B 20 047104
[5] Das S N, Moon K J, Kar J P, Choi J H, Xiong J J 2010 Appl. Phys. Lett. 97 022103
[6] Dai Y, Zhang Y, Li Q K, Nan C W 2002 Chem. Phys. Lett. 358 83
[7] Dai Y, Zhang Y, Bai Y Q, Wang Z L 2003 Chem. Phys. Lett. 375 96
[8] Chen H S, Qi J J, Zhang Y, Zhang X M, Liao Q L, Huang Y H 2007 Appl. Surf. Sci. 253 8901
[9] Wang Z L, Poncharal P, De Heer W A 2000 Pure appl. Chem. 72 209
[10] Poncharal P, Wang Z L, Ugarte D 1999 Sci. 283 1513
[11] Heo Y W, Tien L C, Norton D P 2004 Appl. Phys. Lett. 85 2002
[12] Yang Y, Qi J J, Liao Q L 2009 Appl. Phys. Lett. 95 123112
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003
[14] Jha S K, Liu C P, Chen Z H, Chen K J, Bello I, Zapien J A, Zhang W J, Lee S T 2010 J. Phys. Chem. C 114 7999
[15] Lin W, Yan X, Zhang X 2011 Solid State Commun. 151 1860
[16] Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振 2012 61 052901]
[17] Yang Y, Guo W, Qi J, Zhang Y 2010 Appl. Phys. Lett. 97 223113
[18] Bai Z M, Yan X Q, Chen X, Liu H S, Shen Y W, Zhang Y 2013 Curr. Appl. Phys. 13 165
[19] Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D J, Wang Z L 2009 Appl. Phys. Len. 94 191103
[20] Kamiya T, Tajima K, Nomura K 2008 Phys. Status Solidi 205 1929
[21] Wu C X, Zhou M, Feng C C, Yuan R, Li G, Ma W W, Cai L 2008 Acta Phys. Sin. 57 3887 (in Chinese) [吴春霞, 周明, 冯程程, 袁润, 李刚, 马伟伟, 蔡兰 2008 57 3887]
[22] Chen K J, Hung F Y, Chang S J, Young S J 2009 J. Alloy Compd 479 674
[23] Fang F, Zhao D X, Li B H, Zhang Z Z, Shen D Z, Wang X H 2010 J. Phys. Chem. C 114 12477
Catalog
Metrics
- Abstract views: 7038
- PDF Downloads: 297
- Cited By: 0