-
According to the spin-polarized density functional theory, we study the electronic structures, the magnetic and the optical properties of Cr-doped ZnO nanowires. The calculated results show ferromagnetic coupling for Cr atoms substitution for Zn atoms in ZnO nanowires along the [0001] direction, and the antiferromagnetic coupling with Cr-doped in ZnO nanowires along the [1010] and [0110] directions. The results reveal that the magnetic coupling state near the Fermi level gives rise to such a spin splitting phenomenon near the Fermi level, which indicates that Cr 3d and O 2p orbitals have intense hybrid effects. In addition, the spin electronic density results indicate that system magnetic moments are generated mainly by the unpaired 3d electrons of Cr atoms and are also related to the electron configuration. Moreover, the results of optical properties show that the obvious absorption peaks are observed in the far ultraviolet and the near ultraviolet regions and there is a red shift phenomenon in the ultraviolet region. These results indicate that the Cr-doped ZnO nanowires could be a promising dilute magnetic semiconductor material.
-
Keywords:
- ZnO /
- nanowires /
- first principles /
- magnetic properties
[1] Ohno H 1998 Science 281 951
[2] [3] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[4] [5] Jian W B, Wu Z Y, Huang R T, Chiang S J, Lan M D, Lin J J 2006 Phys. Rev. B 73 233308
[6] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C, Waghmare U V 2005 Phys. Rev. Lett. 94 187204
[7] [8] Kulkarni J S, Kazakova O, Holmes J D 2006 Appl. Phys. A 85 277
[9] [10] [11] Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M, Xu J, Yu D P 2003 Appl. Phys. Lett. 83 4020
[12] [13] Chou S Y, Krauss P R, Zhang W J 1997 Vac. Sci. Technol. B 15 2897
[14] Dietl T, Ohno H, Matsukura F, Cubert J, Ferrand D 2000 Science 287 1019
[15] [16] [17] Ueda K, Tabata H, Kawai K 2001 Appl. Phys. Lett. 79 988
[18] Cho Y M, Choo W K, Kim H, Kim D, Ihm Y E 2002 Appl. Phys. Lett. 80 3358
[19] [20] Jung S W, An S J, Yi G C, Jung C U, Lee S I, Cho S 2002 Appl. Phys. Lett. 80 4561
[21] [22] [23] Neal J R, Behan A J, Ibrahim R M, Blythe H J, Ziese M, Fox A M, Gehring G A 2006 Phys. Rev. Lett. 96 197208
[24] [25] Yuan P F, Ding Z J, Ju X 2008 Chin. Phys. Lett. 25 1030
[26] [27] Jun Y, Jung Y, Cheon J 2002 J. Am. Chem. Soc. 124 615
[28] Lorite I, Rubio-Marcos F, Romero J J, Fernandez J F 2009 Mater. Lett. 63 212
[29] [30] [31] Norberg N S, Kittilstved K R, Amonette J E 2004 J. Am. Chem. Soc. 126 9387
[32] [33] Liu J J, Yu M H, Zhou W L 2005 Appl. Phys. Lett. 87 172505
[34] [35] Zhang X M, Zhang Y, Wang Z L 2008 Appl. Phys. Lett. 92 162102
[36] Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308
[37] [38] Roberts B K, Pakhomov A B, Krishnan K M 2008 J. Appl. Phys. 103 07D133
[39] [40] Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751
[41] [42] Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988
[43] [44] Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H 2001 Appl. Phys. Lett. 78 3824
[45] [46] [47] Lee H J, Jeong S Y, Hwang J Y, Cho C R 2003 Eur. Phys. Lett. 64 797
[48] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
[49] [50] Wang Y, Perdew J P 1991 Phys. Rev. B 44 013298
[51] [52] [53] Sapra A, Sarma D D 2004 Phys. Rev. B 69 25304
[54] [55] Wander A, Harrison N M 2000 Surf. Sci. Lett. 23 L342
[56] [57] Wang Q, Sun Q, Jena P, Kawazoe Y 2005 Appl. Phys. Lett. 87 162509
[58] [59] Hu Y M, Chen Y T, Zhong Z X, Yu C C, Chen G J, Huang P Z, Chou W Y, Chang J, Wang C R 2008 Appl. Surf. Sci. 254 3873
[60] [61] Chua D, Zeng Y P, Jiang D L 2007 Solid State Commum. 143 308
[62] [63] Liu H, Zhang X, Li L Y, Wang Y X, Gao K H, Li Z Q, Zheng R K, Ringer S P, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 91 072511
[64] [65] Zhang Z H, Qi X Y, Jian J K, Duan X F 2006 Micron 37 229
[66] [67] Kong Y C, Yu D P, Zhang B, Fang W, Feng S Q 2001 Appl. Phys. Lett. 78 407
[68] Chen T, Xing G Z, Zhang Z, Chen H Y, Wu T 2008 Nanotechnology 19 435711
[69] [70] [71] Twardowski A, Dietl T, Demianiuk M 1983 Solid State Commun. 48 845
[72] Kolodziejski L A, Gunshor R L, Venkatasubramanian R, Bonsett T C, Frohne R, Datta S, Otsuka N, Bylsma R B, Becker W M, Nurmikko A V 1986 J. Vac. Sci. Technol. B 4 583
[73] [74] Lee Y R, Ramdas A K, Aggarwal R L 1988 Phys. Rev. B 38 10600
[75] -
[1] Ohno H 1998 Science 281 951
[2] [3] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[4] [5] Jian W B, Wu Z Y, Huang R T, Chiang S J, Lan M D, Lin J J 2006 Phys. Rev. B 73 233308
[6] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C, Waghmare U V 2005 Phys. Rev. Lett. 94 187204
[7] [8] Kulkarni J S, Kazakova O, Holmes J D 2006 Appl. Phys. A 85 277
[9] [10] [11] Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M, Xu J, Yu D P 2003 Appl. Phys. Lett. 83 4020
[12] [13] Chou S Y, Krauss P R, Zhang W J 1997 Vac. Sci. Technol. B 15 2897
[14] Dietl T, Ohno H, Matsukura F, Cubert J, Ferrand D 2000 Science 287 1019
[15] [16] [17] Ueda K, Tabata H, Kawai K 2001 Appl. Phys. Lett. 79 988
[18] Cho Y M, Choo W K, Kim H, Kim D, Ihm Y E 2002 Appl. Phys. Lett. 80 3358
[19] [20] Jung S W, An S J, Yi G C, Jung C U, Lee S I, Cho S 2002 Appl. Phys. Lett. 80 4561
[21] [22] [23] Neal J R, Behan A J, Ibrahim R M, Blythe H J, Ziese M, Fox A M, Gehring G A 2006 Phys. Rev. Lett. 96 197208
[24] [25] Yuan P F, Ding Z J, Ju X 2008 Chin. Phys. Lett. 25 1030
[26] [27] Jun Y, Jung Y, Cheon J 2002 J. Am. Chem. Soc. 124 615
[28] Lorite I, Rubio-Marcos F, Romero J J, Fernandez J F 2009 Mater. Lett. 63 212
[29] [30] [31] Norberg N S, Kittilstved K R, Amonette J E 2004 J. Am. Chem. Soc. 126 9387
[32] [33] Liu J J, Yu M H, Zhou W L 2005 Appl. Phys. Lett. 87 172505
[34] [35] Zhang X M, Zhang Y, Wang Z L 2008 Appl. Phys. Lett. 92 162102
[36] Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308
[37] [38] Roberts B K, Pakhomov A B, Krishnan K M 2008 J. Appl. Phys. 103 07D133
[39] [40] Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751
[41] [42] Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988
[43] [44] Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H 2001 Appl. Phys. Lett. 78 3824
[45] [46] [47] Lee H J, Jeong S Y, Hwang J Y, Cho C R 2003 Eur. Phys. Lett. 64 797
[48] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
[49] [50] Wang Y, Perdew J P 1991 Phys. Rev. B 44 013298
[51] [52] [53] Sapra A, Sarma D D 2004 Phys. Rev. B 69 25304
[54] [55] Wander A, Harrison N M 2000 Surf. Sci. Lett. 23 L342
[56] [57] Wang Q, Sun Q, Jena P, Kawazoe Y 2005 Appl. Phys. Lett. 87 162509
[58] [59] Hu Y M, Chen Y T, Zhong Z X, Yu C C, Chen G J, Huang P Z, Chou W Y, Chang J, Wang C R 2008 Appl. Surf. Sci. 254 3873
[60] [61] Chua D, Zeng Y P, Jiang D L 2007 Solid State Commum. 143 308
[62] [63] Liu H, Zhang X, Li L Y, Wang Y X, Gao K H, Li Z Q, Zheng R K, Ringer S P, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 91 072511
[64] [65] Zhang Z H, Qi X Y, Jian J K, Duan X F 2006 Micron 37 229
[66] [67] Kong Y C, Yu D P, Zhang B, Fang W, Feng S Q 2001 Appl. Phys. Lett. 78 407
[68] Chen T, Xing G Z, Zhang Z, Chen H Y, Wu T 2008 Nanotechnology 19 435711
[69] [70] [71] Twardowski A, Dietl T, Demianiuk M 1983 Solid State Commun. 48 845
[72] Kolodziejski L A, Gunshor R L, Venkatasubramanian R, Bonsett T C, Frohne R, Datta S, Otsuka N, Bylsma R B, Becker W M, Nurmikko A V 1986 J. Vac. Sci. Technol. B 4 583
[73] [74] Lee Y R, Ramdas A K, Aggarwal R L 1988 Phys. Rev. B 38 10600
[75]
Catalog
Metrics
- Abstract views: 8209
- PDF Downloads: 875
- Cited By: 0