搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

片上制备横向结构ZnO纳米线阵列紫外探测器件

李江江 高志远 薛晓玮 李慧敏 邓军 崔碧峰 邹德恕

引用本文:
Citation:

片上制备横向结构ZnO纳米线阵列紫外探测器件

李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕

On-chip fabrication of lateral growth ZnO nanowire array UV sensor

Li Jiang-Jiang, Gao Zhi-Yuan, Xue Xiao-Wei, Li Hui-Min, Deng Jun, Cui Bi-Feng, Zou De-Shu
PDF
导出引用
  • 将纳米技术与传统的微电子工艺相结合, 片上制备了横向结构氧化锌(ZnO)纳米线阵列紫外探测器件, 纳米线由水热法直接自组织横向生长于叉指电极之间, 再除去斜向的多余纳米线, 其余工艺步骤与传统工艺相同. 分别尝试了铬(Cr)和金(Au)两种金属电极的器件结构: 由于Cr电极对其上纵向生长的纳米线有抑制作用, 导致横向生长纳米线长度可到达对侧电极, 光电响应方式为受表面氧离子吸附控制的光电导效应, 光电流大但增益低, 响应速度慢, 经二次电极加固, 纳米线根部与电极金属直接形成肖特基接触, 光电响应方式变为光伏效应, 增益和速度得到了极大改善; 由于Au电极对其上纵向生长的纳米线有催化作用, 导致溶质资源的竞争, 相同时间内横向生长的纳米线不能到达对侧, 而是交叉桥接, 但却形成了紫外光诱导的纳米线间势垒结高度调控机理, 得到的器件特性为最优, 在波长为365 nm的20 mW/cm2紫外光照下, 1 V电压时暗电流为10-9 A, 光增益可达8105, 响应时间和恢复时间分别为1.1 s和1.3 s.
    In this paper, we integrate nano technology into traditional microelectronic processing, and develop an on-chip UV sensor based on lateral growth ZnO nanowire arrays. Traditional procedures are used to fabricate the interdigital electrodes, and ZnO nanowires are self-organized and grown between electrodes laterally by hydrothermal method. Additional inclined nanowires are removed during the post-processing procedures, such as ultrasound cleansing and electrode reinforcement. Two kinds of electrode structures are applied, i.e., Cr and Au. For the Cr electrode device structure, because Cr will restrain nanowires from growing vertically on its top, the laterally grown nanowire is long enough to reach the other side of the electrode. The corresponding photoelectric response mechanism is photoconduction controlled by surface oxide ion adsorption. Although the photocurrent is large, the gain is low, and the response speed is slow. Under the UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 2.210-4 A with 1 V bias voltage, the gain is up to 64, the photocurrent cannot reach saturation after 25 s, and the recovery time is 51.9 s. A secondary electrode can be fabricated after growing the nanowire arrays to reinforce the connection between the electrode and the ends of the nanowires. However, the direct contact between metal and semiconductor will form a Schottky contact. The photoelectric response mechanism is then changed to photovoltaic effect, which can greatly improve the gain and response speed. Under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 4.310-8 A with 1 V bias voltage, the gain is up to 1300, the respond time is 3.8 s, and the recovery time is 5.7 s. For the Au electrode device structure, because Au is catalysis for ZnO nanowire growth, nanowires grown in lateral direction will compete with those grown in vertical direction, and hence the laterally grown nanowires are not long enough to reach the other side of the electrode. Nanowires grown from two sides of the electrodes will meet each other and form a bridging junction, however, this will turn the photoconduction mechanism from surface ion controlled into a bridging junction controlled, which yields the best device performance. Before removing the inclined nanowires by ultrasound cleansing, under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 8.310-3 A with 1 V bias voltage, the gain is up to 1350, the respond time is 3.3 s, and the recovery time is 3.4 s. After removing the inclined nanowires, under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 10-9 A with 1 V bias voltage, the gain is up to 8105, the respond time is 1.1 s, and the recovery time is 1.3 s.
      通信作者: 高志远, zygao@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11204009)、北京市自然科学基金(批准号: 4142005)和科研基地建设-科技创新平台-空气质量环境监测与大数据处理(批准号:JJ002790201502)资助的课题.
      Corresponding author: Gao Zhi-Yuan, zygao@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204009), the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005), and the Research Base Construction-Science and Technology Innovation Platform-Environmental Air Quality Monitoring and Big Data Processing, China(Grant No. JJ002790201502).
    [1]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申徳振 2012 61 052901]

    [2]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators, A. 174 43

    [3]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [4]

    Zhou J, Gu Y, Hu Y, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [5]

    Bai S 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [白所 2014 博士学位论文 (兰州: 兰州大学)]

    [6]

    Konenkamp R, Word R C, Schlegel C 2004 Appl. Phys. Lett. 85 6004

    [7]

    Sun X W, Huang J Z, Wang J X, Xu Z 2008 Nano Lett. 8 1219

    [8]

    Park W I, Yi G C 2004 Adv. Mater. 16 87

    [9]

    Bai S, Wu W, Qin Y, Cui N Y, Bayerl D J, Wang X D 2011 Adv. Funct. Mater. 21 4464

    [10]

    Wu W, Bai S, Cui N, Ma F, Wei Z Y, Qin Y, Xie E Q 2010 Sci. Adv. Mater. 2 402

    [11]

    Kang J, Myung S, Kim B, Dong J, Kim G T, Hong S {2008 Nano Technol. 19 0953039

    [12]

    Dong L F, Bush J, Chirayos V, Solanki R, Jiao J, One Y, Conley Jr J F, Ulrich B D 2005 Nano Lett. 5 2112

    [13]

    Li Y, Della Valle F, Simonnet M, Yamada L, Delaunay J J {2009 Nano Technol. 20 0455014

    [14]

    Qin Y, Yang R, Wang Z L 2008 J. Phys. Chem. C 112 18734

    [15]

    Alenezi M R, Henley S J, Silva S R P 2015 Sci. Rep. 5 8516

    [16]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [17]

    Liu N, Fang G, Zeng W, Long H, Fan X, Yuan L Y, Zou X, Liu Y P, Zhao X Z 2010 J. Phys. Chem. C 114 8575

  • [1]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申徳振 2012 61 052901]

    [2]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators, A. 174 43

    [3]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [4]

    Zhou J, Gu Y, Hu Y, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [5]

    Bai S 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [白所 2014 博士学位论文 (兰州: 兰州大学)]

    [6]

    Konenkamp R, Word R C, Schlegel C 2004 Appl. Phys. Lett. 85 6004

    [7]

    Sun X W, Huang J Z, Wang J X, Xu Z 2008 Nano Lett. 8 1219

    [8]

    Park W I, Yi G C 2004 Adv. Mater. 16 87

    [9]

    Bai S, Wu W, Qin Y, Cui N Y, Bayerl D J, Wang X D 2011 Adv. Funct. Mater. 21 4464

    [10]

    Wu W, Bai S, Cui N, Ma F, Wei Z Y, Qin Y, Xie E Q 2010 Sci. Adv. Mater. 2 402

    [11]

    Kang J, Myung S, Kim B, Dong J, Kim G T, Hong S {2008 Nano Technol. 19 0953039

    [12]

    Dong L F, Bush J, Chirayos V, Solanki R, Jiao J, One Y, Conley Jr J F, Ulrich B D 2005 Nano Lett. 5 2112

    [13]

    Li Y, Della Valle F, Simonnet M, Yamada L, Delaunay J J {2009 Nano Technol. 20 0455014

    [14]

    Qin Y, Yang R, Wang Z L 2008 J. Phys. Chem. C 112 18734

    [15]

    Alenezi M R, Henley S J, Silva S R P 2015 Sci. Rep. 5 8516

    [16]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [17]

    Liu N, Fang G, Zeng W, Long H, Fan X, Yuan L Y, Zou X, Liu Y P, Zhao X Z 2010 J. Phys. Chem. C 114 8575

  • [1] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列.  , 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [3] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究.  , 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [4] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术.  , 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [5] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [6] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性.  , 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [7] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器.  , 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [8] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [9] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性.  , 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [10] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [11] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [12] 周梅, 赵德刚. 一种测量p-GaN载流子浓度的方法.  , 2011, 60(3): 037804. doi: 10.7498/aps.60.037804
    [13] 周梅, 赵德刚. 以弱p型为有源区的新型p-n结构GaN紫外探测器.  , 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [14] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [15] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法.  , 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [17] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [18] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究.  , 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [19] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究.  , 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [20] 周拥华, 张义门, 张玉明, 孟祥志. 6H-SiC pn结紫外光探测器的模拟与分析.  , 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
计量
  • 文章访问数:  6150
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-03-01
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map