Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis on dispersion characteristics of rectangular metal grating based on spoof surface plasmons

Liu Yong-Qiang Kong Ling-Bao Du Chao-Hai Liu Pu-Kun

Citation:

Analysis on dispersion characteristics of rectangular metal grating based on spoof surface plasmons

Liu Yong-Qiang, Kong Ling-Bao, Du Chao-Hai, Liu Pu-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The unique optical and physical properties of surface plasmon polaritons (SPP) has brought about a series of novel phenomena such as SPP-enhanced transmission, local resonance, etc., and SPP has become a research hotspot around the world. In this paper, the dispersion characteristics and modes of rectangular metal grating based on spoof surface plasmons (SSP) are studied theoretically and numerically. The electromagnetic fields of SSP which are below and above the grating surface are presented using eigenmode expansion method and under periodic boundary conditions, besides the fact that the SSP dispersion relations are obtained by matching the boundary conditions of electromagnetic fields both for rectangular metal grating with roofed metal plate and that without roofed metal plate. Results for these two different cases are given according to numerical calculation and it is found that the roofed metal plate can introduce an additional fast wave mode which is beyond the light line in the dispersion diagram. And the results of analytical SSP dispersion are verified by electromagnetic simulations based on the finite difference method and finite integration method. The dependence of the dispersion characteristics and mode distributions on various parameters of metal grating is studied theoretically. It is shown that the dispersion relations obtained by eigenmode expansion method agree well with the results of electromagnetic simulations. The phase velocity of SSP on the grating surface can be decreased by increasing metal grating depth or decreasing grating period. The bandwidth of electron beam-SSP interaction can be extended by increasing grating period ratio. The influence of the distance between the roofed metal plate and the grating surface on the SSP dispersion is studied and is found that the role of roofed metal plate is insensitive to the slow wave SSP mode. The SSP dispersion and modes for the 3-D metal grating which are extended from the above 2-D SSP dispersion are also given. The SSP symmetric modes and anti-symmetric modes manifest themself alternately in the dispersion diagram on the 3-D grating surface. Compared with the 2-D SSP bound mode without roofed metal plate, it is found that in the 3-D grating structure the slow wave SSP modes and fast wave SSP modes coexist. The 3-D SSP mode with various grating lateral width is studied, and the competition and degeneracy of modes are analyzed particularly. The SSP mode intervals can be enlarged by decreasing the lateral width of the grating, which is optimum for avoiding mode competitions. Studies on dispersion and modes of the 2-D and 3-D metal grating structures based on SSP will lay the foundations for further studies of electron beam-SSP interaction, and development of the novel terahertz vacuum electronic source with high-efficiency and wide-bandwidth.
      Corresponding author: Liu Pu-Kun, pkliu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471007), and the China Postdoctoral Science Foundation (Grant No. 2014M560019).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [3]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [4]

    Gu B Y 2007 Physical Review 36 280 (in Chinese) [顾本源 2007 物理评述 36 280]

    [5]

    Maier S A, Andrews S R, Martín-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [6]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [7]

    Li X, Jiang T, Shen L F, Deng X H 2013 Appl. Phys. Lett. 102 031606

    [8]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [9]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, Garcia-Vidal F J 2008 Phys. Rev. Lett. 100 023901

    [10]

    Catrysse P B, Veronis G, Shin H, Shen J T, Fan S H 2006 Appl. Phys. Lett. 88 031101

    [11]

    Zhu W Q, Agrawal A, Nahata A 2008 Opt. Express 16 6216

    [12]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [13]

    Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T, Li L W 2011 Acta Phys. Sin. 60 107301 (in Chinese) [王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐为 2011 60 107301]

    [14]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [15]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16

    [16]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995

    [17]

    Mehrany K, Rashidian B 2003 IEEE Trans. Elec. Dev. 50 1562

    [18]

    Freund H P, Abu- Elfadl T M 2004 IEEE Trans. Plasmas Sci. 32 1015

    [19]

    Joe J, Louis L J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasmas 4 2707

    [20]

    Carlsten B E 2002 Phys. Plasmas 9 5088

    [21]

    Joe J, Scharer J, Booske J, McVey B 1994 Phys. Plasmas 1 176

    [22]

    Donohue J T, Gardelle J 2011 Phys. Rev. ST Accel. Beams 14 060709

    [23]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 63 024101]

    [24]

    Mineo M, Paoloni C 2010 IEEE Trans. Elec. Dev. 57 1481

    [25]

    Kong L B, Huang C P, Du C H, Liu P K, Yin X G 2015 Sci. Rep. 5 8772

    [26]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [27]

    Shin Y M, Baig A, Barnett L R, Tsai W C, Luhmann N C, 2012 IEEE Trans. Elec. Dev. 59 234

    [28]

    Liu Q L, Wang Z C, Liu P K, Dong F 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲, 董芳 2012 61 244102]

    [29]

    Shen L F, Chen X D, Yang T J 2008 Opt. Express 16 3326

    [30]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p405 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社) 第405页]

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [3]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [4]

    Gu B Y 2007 Physical Review 36 280 (in Chinese) [顾本源 2007 物理评述 36 280]

    [5]

    Maier S A, Andrews S R, Martín-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [6]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [7]

    Li X, Jiang T, Shen L F, Deng X H 2013 Appl. Phys. Lett. 102 031606

    [8]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [9]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, Garcia-Vidal F J 2008 Phys. Rev. Lett. 100 023901

    [10]

    Catrysse P B, Veronis G, Shin H, Shen J T, Fan S H 2006 Appl. Phys. Lett. 88 031101

    [11]

    Zhu W Q, Agrawal A, Nahata A 2008 Opt. Express 16 6216

    [12]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [13]

    Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T, Li L W 2011 Acta Phys. Sin. 60 107301 (in Chinese) [王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐为 2011 60 107301]

    [14]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [15]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16

    [16]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995

    [17]

    Mehrany K, Rashidian B 2003 IEEE Trans. Elec. Dev. 50 1562

    [18]

    Freund H P, Abu- Elfadl T M 2004 IEEE Trans. Plasmas Sci. 32 1015

    [19]

    Joe J, Louis L J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasmas 4 2707

    [20]

    Carlsten B E 2002 Phys. Plasmas 9 5088

    [21]

    Joe J, Scharer J, Booske J, McVey B 1994 Phys. Plasmas 1 176

    [22]

    Donohue J T, Gardelle J 2011 Phys. Rev. ST Accel. Beams 14 060709

    [23]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 63 024101]

    [24]

    Mineo M, Paoloni C 2010 IEEE Trans. Elec. Dev. 57 1481

    [25]

    Kong L B, Huang C P, Du C H, Liu P K, Yin X G 2015 Sci. Rep. 5 8772

    [26]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [27]

    Shin Y M, Baig A, Barnett L R, Tsai W C, Luhmann N C, 2012 IEEE Trans. Elec. Dev. 59 234

    [28]

    Liu Q L, Wang Z C, Liu P K, Dong F 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲, 董芳 2012 61 244102]

    [29]

    Shen L F, Chen X D, Yang T J 2008 Opt. Express 16 3326

    [30]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p405 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社) 第405页]

  • [1] Li Yu-Qing, Wang Hong-Guang, Zhai Yong-Gui, Yang Wen-Jin, Wang Yue, Li Yun, Li Yong-Dong. Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator. Acta Physica Sinica, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] Lian Tian-Hong, Wang Shi-Yu, Kou Ke, Liu Yun. Off-axis pumped Hermite-Gaussian mode solid-state laser. Acta Physica Sinica, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [3] Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Dong Zhi-Wei. Competitions among modes in magnetically insulated transmission line oscillator. Acta Physica Sinica, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [4] Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian. Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Acta Physica Sinica, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [5] Wang Bing, Wen Guang-Jun, Wang Wen-Xiang. Dispersion characteristics of the coaxial interlaced disk-loaded waveguide slow-wave structure. Acta Physica Sinica, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [6] He Fang-Ming, Luo Ji-Run, Zhu Min, Guo Wei. Analysis of the dispersion and interaction impedance for a coupled cavity slow wave structure with double in-line slots in TWT. Acta Physica Sinica, 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [7] Gong Jian-Qiang, Liang Chang-Hong. An accurate macro-cell-method for extracting dispersion characteristics of 1D reciprocal microwave structures with finite periodicity. Acta Physica Sinica, 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [8] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [9] Liu Qing-Lun, Wang Zi-Cheng, Liu Pu-Kun, Dong Fang. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [10] Shi Zong-Jun, Yang Zi-Qiang, Hou Jun, Lan Feng, Liang Zheng. Study of high frequency characteristics of metallic-pole-planar slow wave structure. Acta Physica Sinica, 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [11] Yuan Xue-Song, Yan Yang, Liu Sheng-Gang. Study on the dispersion relations of a relativistic annular electron beam guided by a finite axial magnetic field. Acta Physica Sinica, 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [12] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [13] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [14] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [15] Lu Zhi-Gang, Wei Yan-Yu, Gong Yu-Bin, Wu Zhou-Miao, Wang Wen-Xiang. Study of high frequency characteristics of the rectangular waveguide grating slow-wave structure with arbitrary grooves. Acta Physica Sinica, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [16] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [17] Luo Xiong, Liao Cheng, Meng Fan-Bao, Zhang Yun-Jian. Resonance effect on a coaxial vircator. Acta Physica Sinica, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [18] Yue Ling-Na, Wang Wen-Xiang, Wei Yan-Yu, Gong Yu-Bin. The dispersion characteristics of the coaxial arbitrary-shaped-groove periodic slow-wave structure. Acta Physica Sinica, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] Zhang Yong, Mo Yuan-Long, Xu Rui-Min, Yan Bo, Xie Xiao-Qiang. High-frequency properties of the disk-loaded waveguide filled with plasma. Acta Physica Sinica, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [20] Bayanheshig, Qi Xiang-Dong, Tang Yu-Guo. The vector diffraction theory analysis of chromatic dispersion characteristics o f phase grating. Acta Physica Sinica, 2003, 52(5): 1157-1161. doi: 10.7498/aps.52.1157
Metrics
  • Abstract views:  7361
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2015
  • Accepted Date:  05 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map