搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

储氢笼型水合物生成促进机理的分子动力学模拟研究

颜克凤 李小森 孙丽华 陈朝阳 夏志明

引用本文:
Citation:

储氢笼型水合物生成促进机理的分子动力学模拟研究

颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明

Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate

Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming
PDF
导出引用
  • 用分子动力学(MD)模拟方法研究水合物法储氢的促进机理,系统研究纯H2水合物、H2+四氢呋喃(THF)水合物、H2+四丁基溴化铵(TBAB)半笼型水合物和H2+四异戊基溴化铵(TiAAB)半笼型水合物的微观结构及性质.模拟分析客体与笼子之间的稳定能EGH,得出水合物中大笼子对稳定水合物起到主要作用.THF进入大笼子能促进H2水合物稳定,降低H2水合物形成压力,模拟结果与实验一致.模拟对比不同客体在大笼子中的EGH值,得出从小到大的顺序依次为TiAAB,TBAB,THF,H2.模拟结果表明半笼型水合物的稳定性比结构Ⅱ型水合物强,同时得出H2+TiAAB半笼型水合物的结构最稳定.MD模拟为TiAAB成为一种水合物新型促进剂和新型储氢材料提供了理论依据.
    Molecular dynamics(MD) simulation is used to study the promotion mechanism of store hydrogen via the hydrate formation. The stable structures and the microcosmic properties of pure H2 hydrate, H2+tetrahydrofuran (THF) hydrate, H2+tetra-n-butylammonium bromide (TBAB) and H2+tetraisoamylammonium bromide (TiAAB) semiclathrate hydrates are investigated systematically. The stabilization energy, EGH, between guest and cavity is calculated. It is shown that the large cavity of hydrate plays a main role of stabilizing hydrate. THF in large cavity can promote the stabilization of hydrogen hydrate and reduce the pressure of formation hydrogen hydrate, which are the same as the experimental results. Compared with the EGH between guest and large cavity, the results are in the order of increase as TiAAB,TBAB,THF,H2. It is concluded that the stability of semiclathrate hydrate is better than the structure Ⅱ hydrate, and H2+TiAAB semiclathrate hydrate is stablest. MD simulation provides helpful information for future TiAAB semiclathrate as a new promoter of forming hydrate and a new hydrogen storage material.
    • 基金项目: 国家自然科学基金(批准号:51076155, 51004089,21106144)、国家自然科学基金委员会与广东省自然科学联合基金(批准号:U0733003)和广东省科技计划(批准号:2009B050600006)资助的课题.
    [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1]

    Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 Proc. Natl. Acad. Sci. USA 107 2801

    [2]

    Ramirez-Cuesta A J, Jones M O, David W I F 2009 Mater. Today 12 54

    [3]
    [4]

    Mao W L, Mao H, Goncharov A F, Stuzhkin V V, Guo Q, Hu J, Shu J, Hemley R J, Somayazulu M, Zhao Y 2002 Science 297 2247

    [5]
    [6]

    Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N, Sloan E D 2004 Science 306 469

    [7]
    [8]
    [9]

    Lokshin K A, Zhao Y, He D, Mao W L, Mao H, Hemley R J, Lobanov M V, Greenblatt M 2004 Phys. Rev. Lett. 93 125503

    [10]

    Hester K C, Strobel T A, Sloan E D, Koh C A, Huq A, Schultz A J 2006 J. Phys. Chem. B 110 14024

    [11]
    [12]

    Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, Sloan E D 2006 J. Phys. Chem. B 110 17121

    [13]
    [14]
    [15]

    Dyadin Y A, Larionov E G, Manakov A Y, Zhurko F V, Aladko E Y, Mikina T V, Komarov V Y 1999 Mendeleev Commun. 5 209

    [16]

    Patchkovskii S, Tse J S 2003 Proc. Natl. Acad. Sci. USA 100 14645

    [17]
    [18]
    [19]

    Mao W L, Mao H K 2004 Proc. Natl. Acad. Sci. USA 101 708

    [20]
    [21]

    Lee H, Lee J W, Kim D Y, Park J, Seo Y T, Zeng H, Moudrakovski I L, Ratcliffe C I, Ripmeester J A 2005 Nature 434 743

    [22]
    [23]

    Anderson R, Chapoy A, Tohidi B 2007 Langmuir 23 3440

    [24]
    [25]

    Hashimoto S, Sugahara T, Sato H, Ohgaki K 2007 J. Chem. Eng. Data 52 517

    [26]

    Talyzin A 2008 Int. J. Hydrogen Ener. 33 111

    [27]
    [28]
    [29]

    Sugahara T, Haag J C, Prasad P S R, Warntjes A A, Sloan E D, Sum A K, Koh C A 2009 J. Am. Chem. Soc. 131 14616

    [30]

    Komatsu H, Yoshioka H, Ota M, Sato Y, Watanabe M, Smith R L, Peters C J 2010 J. Chem. Eng. Data 55 2214

    [31]
    [32]

    Strobel T A, Kim Y, Andrews G S, Ferrell J R, Koh C A, Herring A M, Sloan E D 2008 J. Am. Chem. Soc. 130 14975

    [33]
    [34]
    [35]

    Shin K, Kim Y, Strobel T A, Prasad P S R, Sugahara T, Lee H, Sloan E D, Sum A K, Koh C 2009 J. Phys. Chem. A 113 6415

    [36]

    Lin Y, Mao W L, Mao H K 2009 Proc. Natl. Acad. Sci. USA 106 8113

    [37]
    [38]

    Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H 2005 Acta Crystallogr. C 61 O65

    [39]
    [40]
    [41]

    Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K 2006 Chem. Eng. Sci. 61 7884

    [42]

    Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K 2008 Chem. Eng. Sci. 63 1092

    [43]
    [44]

    Chapoy A, Anderson R, Tohidi B 2007 J. Am. Chem. Soc. 129 746

    [45]
    [46]

    Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K 2008 Chem. Eng. Sci. 63 5789

    [47]
    [48]

    Geng C Y, Wen H, Zhou H 2009 J. Phys. Chem. A 113 5463

    [49]
    [50]

    Nada H 2006 J. Phys. Chem. B 110 16526

    [51]
    [52]
    [53]

    Vatamanu J, Kusalik P G 2006 J. Phys. Chem. B 110 15896

    [54]
    [55]

    Zhang J, Hawtin R W, Yang Y, Nakagava E, Tivero M, Choi S K, Rodger P M 2008 J. Phys. Chem. B 112 10608

    [56]
    [57]

    Yang Y H, Dong S L, Wang L 2008 Chin. Phys. B 17 270

    [58]

    Yan K F, Li X S, Chen Z Y, Li G, Li Z B 2007 Acta Phys. Sin. 56 6727 (in Chinese) [颜克凤、李小森、陈朝阳、李 刚、李志宝 2007 56 6727]

    [59]
    [60]

    Freer E M, Sloan E D 2000 Ann. N.Y. Acad. Sci. 912 651

    [61]
    [62]
    [63]

    Storr M T, Taylor P C, Monfort J P, Rodge P M 2004 J. Am. Chem. Soc. 126 1569

    [64]
    [65]

    Yan K F, Mi J G, Zhong C L 2006 Acta Chim. Sin. 64 223 (in Chinese) [颜克凤、密建国、仲崇立 2006 化学学报 64 223]

    [66]
    [67]

    Kirchner M T, Boese R, Billups W E, Norman L R 2004 J. Am. Chem. Soc. 126 9407

    [68]
    [69]

    Feil D, Jeffrey G A 1961 J. Chem. Phys. 35 1863

    [70]

    Alavi S, Ripmeester J A, Klug D D 2005 J. Chem. Phys. 123 024507

    [71]
    [72]
    [73]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [74]
    [75]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515

    [76]
    [77]

    Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K 2008 J. Phys. Chem. B 112 14206

    [78]

    Chandrasekhar J, Jorgensen W L 1982 J. Chem. Phys. 77 5073

    [79]
    [80]
    [81]

    Lindahl E, Hess B, van der Spoel D 2001 J. Mol. Model. 7(8) 306

    [82]
    [83]

    Oberbrodhage J 2000 Phys. Chem. Chem. Phys. 2 129

    [84]
    [85]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simul. 28 385

    [86]

    Allen M P, Tildeslay D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) p156

    [87]
    [88]
    [89]

    Nos S 1984 J. Chem. Phys. 81 511

    [90]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [91]
  • [1] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟.  , 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能.  , 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [5] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [6] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究.  , 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [7] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能.  , 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [8] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能.  , 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [9] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究.  , 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [10] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟.  , 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [11] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究.  , 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [12] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [13] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] 沈超, 胡雅婷, 周硕, 马晓兰, 李华. 单壁碳纳米管低温及常温下储氢行为的模拟计算研究.  , 2013, 62(3): 038801. doi: 10.7498/aps.62.038801
    [15] 颜克凤, 李小森, 陈朝阳, 徐纯钢. 整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟.  , 2010, 59(6): 4313-4321. doi: 10.7498/aps.59.4313
    [16] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解.  , 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [17] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解.  , 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型.  , 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] 郑 宏, 王绍青, 成会明. 微孔对单壁纳米碳管储氢性能的影响.  , 2005, 54(10): 4852-4856. doi: 10.7498/aps.54.4852
计量
  • 文章访问数:  9396
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-07
  • 修回日期:  2011-06-27
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map