搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响

侯堃 张占文 黄勇 韦建军

引用本文:
Citation:

气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响

侯堃, 张占文, 黄勇, 韦建军

Characterization and properties of polyimide films prepared in different monomer ratios by vapor deposited polymerization

Hou Kun, Zhang Zhan-Wen, Huang Yong, Wei Jian-Jun
PDF
导出引用
  • 聚酰亚胺微球作为惯性约束聚变的重要候选靶丸之一, 其力学性能和热学性能的提高对于实现聚变点火有重要意义. 本文以均苯四甲酸二酐和二氨基二苯醚为原料, 采用气相沉积法制备了不同单体配比的聚酰胺酸薄膜, 研究了制备聚酰胺酸薄膜过程中不同单体蒸发温度对薄膜组成的影响, 并对聚酰胺酸薄膜进行热环化处理. 采用红外光谱仪分析了聚酰胺酸薄膜和聚酰亚胺薄膜的组成, 结果表明: 随着二酐蒸发温度的增加, 聚酰胺酸薄膜中过量二酐单体的红外吸收振动特征峰(1780 cm-1, 1850 cm-1)强度增加, 单体配比由二胺过量到二酐二胺配比均衡再到二酐过量. 热环化处理的过程中, 薄膜中过量单体会再次蒸发, 其红外图谱显示最终产物只有聚酰亚胺, 但单体配比接近样品聚酰亚胺红外特征振动峰(1380 cm-1)强度更大. X 射线衍射图谱显示配比接近的样品具有更高的晶化程度, 说明过量单体的存在抑制了聚酰胺酸分子链的生长, 造成分子量降低. 采用纳米压痕仪和热重分析仪分别测量了聚酰亚胺薄膜的弹性模量和硬度以及失重曲线, 结果表明分子量的降低会造成聚酰亚胺薄膜的弹性模量和硬度的降低, 同时热稳定性也变差. 扫描电子显微镜图像显示聚酰亚胺薄膜呈层状结构, 单体配比接近的样品表面状况更好, 这一点与聚酰亚胺分子的生长规律相符合.
    The improvement of mechanical and thermal properties of the polyimide (PI) capsule, which is one of the most important ignition capsules in inertial confinement fusion experiment, has great significance to realize the ignition. PI capsules can be prepared by solution method and vapor deposited polymerization (VDP) method. In comparison with the traditional solution method, the polyimide film prepared by the method of vapor deposition has the characteristics of controllable thickness, uniformity, and better surface roughness. At the same time, it can be deposited on the surface of complex structures. Because of its excellent properties, VDP has great advantages in the preparation of PI films and capsules. The difference between the capsule and the film prepared by VDP is mainly caused from the geometric size and the substrate. By adjusting the monomer content, the performance of PI film can be improved, and it is important for enhancing the performance of PI capsules. In this paper, pyromellitic dianhydride (PMDA) and oxydianiline (ODA) are used to prepare poly amic acid (PAA) films in different monomer ratios by vapor deposited polymerization. The evaporation temperature of ODA is 95 ℃, and that of the PMDA may be 120 ℃, 123 ℃, 124 ℃ or 126 ℃ respectively. FT-IR spectra measurement shows that the absorbance of PMDA becomes stronger with increasing evaporation temperature. After heat treatment, the excessive PMDA is evaporated again. There exists only PI in the final product. But the structure, elastic modulus, and hardness of the PI thin films are influenced by the existence of excessive monomer in the progenitor. With the increase of PMDA evaporation temperature, the stretching vibration peaks of C-N bond intensity will be 72.1%, 91.6%, 69.2% and 63.5%, compared with the vibration peaks of benzene ring; this indicates that the molecular weight of PI is reduced by the imbalance of the composition. The XRD curve shows that the film with composition close to it has a higher crystallization degree. FT-IR and XRD curvs indicate that the presence of excess monomer could inhibit further growth of the molecular chain, resulting in the decrease of molecular weight. The elastic modulus and hardness of polyimide film are measured by the nano-indentation tester, and the thermal stability is analyzed by a thermogravimetric analyzer. Samples of low molecular weight show low elastic modulus and hardness, while the thermal stability becomes worse. The temperatures of different samples with 5% molecular weight are 487 ℃, 524 ℃, 542 ℃ and 533 ℃ respectively, showing that increase of molecular weight is beneficial to the improvement of thermal stability of the films. Scanning electron microscopy images show that the polyimide film has a layered structure, the samples having composition close to each other show better surface roughness, being in good agreement with the molecular growth theory of polyimide.
    [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defend Industry Press) p1 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第1页]

    [2]

    Zhang Z W, Huang Y, Liu Y Y, Li B, Tang Y J, Chen S F 2007 Funct. Mater. 38 1678 (in Chinese) [张占文, 黄勇, 刘一扬, 李波, 唐永建, 陈素芬 2007 功能材料 38 1678]

    [3]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese) [张占文, 漆小波, 李波 2012 61 145204]

    [4]

    Wang H, Cao L H, Zhao Z Q, Yu M Y, Gu Y Q, He X T 2014 Chin. Phys. B 23 055202

    [5]

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205 (in Chinese) [田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205]

    [6]

    Pu Y D, Zhan J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 23 015202

    [7]

    Stephan A L, Mitchell A, Steven R B, Evelyn F 2004 Fusion Sci. Technol. 45 181

    [8]

    Tang Y J, Zhang L, Wu W D, Li B 2008 High Power Laser and Particle Beams 20 1773 (in Chinese) [唐永建, 张林, 吴卫东, 李波 2008 强激光与粒子束 20 1773]

    [9]

    Cao H, Huang Y, Chen S F, Zhan Z W, Wei J J 2013 Acta Phys. Sin. 62 196801 (in Chinese) [曹洪, 黄勇, 陈素芬, 张占文, 韦建军 2013 62 196801]

    [10]

    Yao H, Li S, Zhang Z W, Huang Y, Wang G X 2011 Surf. Technol. 40 53 (in Chinese) [姚红, 李赛, 张占文, 黄勇, 汪国秀 2011 表面技术 40 53]

    [11]

    Yao H, Zhang Z W, Huang Y, Li S, Li B 2011 High Power Laser and Particle Beams 23 1861 (in Chinese) [姚红, 张占文, 黄勇, 李赛, 李波 2011 强激光与粒子束 23 1861]

    [12]

    Cao H, Huang Y, Ye L N, Wei J J, Zhang Z W 2013 High Power Laser and Particle Beams 25 1996 (in Chinese) [曹洪, 黄勇, 叶丽娜, 韦建军, 张占文 2013 强激光与粒子束 25 1996]

    [13]

    Huang Y, Li B, Zhang Z W, Bai H, Chu Q M, Ma X J, Wei S, Shi T 2008 High Power Laser and Particle Beams 20 1125 (in Chinese) [黄勇, 李波, 张占文, 白宏, 初巧妹, 马小军, 魏胜, 师涛 2008 强激光与粒子束 20 1125]

    [14]

    Ding M X, He T B 1998 Polyimide New Material (Beijing: Science Press) p1 (in Chinese) [丁孟贤, 何天白 1998 聚酰亚胺新型材料(北京: 科学出版社) 第1页]

    [15]

    Yang Y J, Zhang L N, Li S B, Wang Z M, Xu J H, Yang W Y, Jiang Y D 2013 Nano-Micro Lett. 5 40

    [16]

    Wang Z W, Liu L Y, Chen R F, Zheng C, Su H Q, Huang W 2013 Chin. Sci. Bull. 58 2690 (in Chinese) [王智玮, 刘丽媛, 陈润锋, 郑超, 苏海全, 黄维 2013 科学通报 58 2690]

    [17]

    Salem J R, Sequedu F O, Duran J 1986 J. Vacuum Sci. Technol. A 4 369

    [18]

    Iijima M, Inagawa K, Itoh A 1987 J. Vacuum Sci. Technol. A 5 2253

    [19]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, He Z B 2009 Atomic Energy Science and Technology 43 457 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 何智兵 2009 原子能科学与技术 43 457]

    [20]

    Liang T, Makita Y, Kimura S 2001 Polymer 42 4867

    [21]

    Andrea K 2007 Ph. D. Dissertation (New York: University of Rochester)

    [22]

    Wan J S, Yue Z F 2001 J. Experim. Mech. 17 131 (in Chinese) [万建松, 岳珠峰 2002 实验力学 17 131]

    [23]

    Liu M H, Wang J, Wang D A 2005 Engineer. Plastics Appl. 33 39 (in Chinese) [刘美华, 王静, 王东爱 2005 工程塑料应用 33 39]

  • [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defend Industry Press) p1 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第1页]

    [2]

    Zhang Z W, Huang Y, Liu Y Y, Li B, Tang Y J, Chen S F 2007 Funct. Mater. 38 1678 (in Chinese) [张占文, 黄勇, 刘一扬, 李波, 唐永建, 陈素芬 2007 功能材料 38 1678]

    [3]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese) [张占文, 漆小波, 李波 2012 61 145204]

    [4]

    Wang H, Cao L H, Zhao Z Q, Yu M Y, Gu Y Q, He X T 2014 Chin. Phys. B 23 055202

    [5]

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205 (in Chinese) [田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205]

    [6]

    Pu Y D, Zhan J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 23 015202

    [7]

    Stephan A L, Mitchell A, Steven R B, Evelyn F 2004 Fusion Sci. Technol. 45 181

    [8]

    Tang Y J, Zhang L, Wu W D, Li B 2008 High Power Laser and Particle Beams 20 1773 (in Chinese) [唐永建, 张林, 吴卫东, 李波 2008 强激光与粒子束 20 1773]

    [9]

    Cao H, Huang Y, Chen S F, Zhan Z W, Wei J J 2013 Acta Phys. Sin. 62 196801 (in Chinese) [曹洪, 黄勇, 陈素芬, 张占文, 韦建军 2013 62 196801]

    [10]

    Yao H, Li S, Zhang Z W, Huang Y, Wang G X 2011 Surf. Technol. 40 53 (in Chinese) [姚红, 李赛, 张占文, 黄勇, 汪国秀 2011 表面技术 40 53]

    [11]

    Yao H, Zhang Z W, Huang Y, Li S, Li B 2011 High Power Laser and Particle Beams 23 1861 (in Chinese) [姚红, 张占文, 黄勇, 李赛, 李波 2011 强激光与粒子束 23 1861]

    [12]

    Cao H, Huang Y, Ye L N, Wei J J, Zhang Z W 2013 High Power Laser and Particle Beams 25 1996 (in Chinese) [曹洪, 黄勇, 叶丽娜, 韦建军, 张占文 2013 强激光与粒子束 25 1996]

    [13]

    Huang Y, Li B, Zhang Z W, Bai H, Chu Q M, Ma X J, Wei S, Shi T 2008 High Power Laser and Particle Beams 20 1125 (in Chinese) [黄勇, 李波, 张占文, 白宏, 初巧妹, 马小军, 魏胜, 师涛 2008 强激光与粒子束 20 1125]

    [14]

    Ding M X, He T B 1998 Polyimide New Material (Beijing: Science Press) p1 (in Chinese) [丁孟贤, 何天白 1998 聚酰亚胺新型材料(北京: 科学出版社) 第1页]

    [15]

    Yang Y J, Zhang L N, Li S B, Wang Z M, Xu J H, Yang W Y, Jiang Y D 2013 Nano-Micro Lett. 5 40

    [16]

    Wang Z W, Liu L Y, Chen R F, Zheng C, Su H Q, Huang W 2013 Chin. Sci. Bull. 58 2690 (in Chinese) [王智玮, 刘丽媛, 陈润锋, 郑超, 苏海全, 黄维 2013 科学通报 58 2690]

    [17]

    Salem J R, Sequedu F O, Duran J 1986 J. Vacuum Sci. Technol. A 4 369

    [18]

    Iijima M, Inagawa K, Itoh A 1987 J. Vacuum Sci. Technol. A 5 2253

    [19]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, He Z B 2009 Atomic Energy Science and Technology 43 457 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 何智兵 2009 原子能科学与技术 43 457]

    [20]

    Liang T, Makita Y, Kimura S 2001 Polymer 42 4867

    [21]

    Andrea K 2007 Ph. D. Dissertation (New York: University of Rochester)

    [22]

    Wan J S, Yue Z F 2001 J. Experim. Mech. 17 131 (in Chinese) [万建松, 岳珠峰 2002 实验力学 17 131]

    [23]

    Liu M H, Wang J, Wang D A 2005 Engineer. Plastics Appl. 33 39 (in Chinese) [刘美华, 王静, 王东爱 2005 工程塑料应用 33 39]

  • [1] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展.  , 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [2] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理.  , 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [3] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [5] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律.  , 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [6] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究.  , 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟.  , 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [8] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [9] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性.  , 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [10] 晏骥, 郑建华, 陈黎, 胡昕, 黄天晅, 江少恩. 多点光源相衬成像法应用于内爆背光照相实验.  , 2013, 62(12): 125203. doi: 10.7498/aps.62.125203
    [11] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [12] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [13] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [14] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [15] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响.  , 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [16] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦.  , 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [17] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究.  , 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [20] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
计量
  • 文章访问数:  8006
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2015-10-09
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map