搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中波红外微型静态傅里叶变换光谱仪的设计与分析

王洪亮 吕金光 梁静秋 梁中翥 秦余欣 王维彪

引用本文:
Citation:

中波红外微型静态傅里叶变换光谱仪的设计与分析

王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪

Design and analysis of medium wave infrared miniature static Fourier transform spectrometer

Wang Hong-Liang, Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu, Wang Wei-Biao,
PDF
导出引用
  • 提出一种基于微光学元件的空间调制微型傅里叶变换红外光谱仪,通过引入红外微结构衍射光学元件、多级微反射镜和微透镜阵列,实现仪器的微型化.介绍了微型傅里叶变换红外光谱仪的结构及基本原理,分析了微型准直系统和聚焦耦合光学系统的设计理论,研究了单片折衍混合准直透镜的残存像差、衍射面的衍射效率、多级微反射镜的衍射、微透镜阵列的孔径衍射和中继系统的轴向装配误差对光谱复原的影响.最后,对中波红外微型傅里叶变换光谱仪进行了建模仿真,得到的复原光谱与理想的光谱曲线比较符合,实际的光谱复原误差为2.89%.该中波红外微型静态傅里叶变换光谱仪无可动部件,且采用了微光学元件取代了传统的红外镜头,不仅稳定性良好,而且体积小、重量轻,有利于在线监测应用.
    This paper presents a spatial modulation Fourier transform micro-spectrometer based on micro-optical elements. The infrared microstructure diffractive optical elements, multi-step micro-mirrors and microlens array are introduced to realize the miniaturization of the instrument. In addition, the structure and basic principle of Fourier transform infrared micro-spectrometer are introduced. The design theory of micro-collimation system is analyzed based on the negative dispersion, the abberation correction and the arbitrary phase modulation characteristics of diffractive optical element. Combined with the characteristics of micro-static interference system, the micro-focusing coupled optical system is analyzed and designed. Based on the wave aberration theory and the Sellmeier dispersion formula, the influence of residual aberration on spectral recovery and the diffraction efficiency of diffraction surface in single-chip hybrid diffractive-refractive collimating lens are studied. The effects of diffraction of multi-stage micro-mirrors and the aperture diffraction of microlens array on spectral recovery are studied by using the scalar diffraction theory. Furthermore, the influence of axial assembly error of relay system on the whole system performance is studied. The results show that the diffraction efficiency of the diffraction surface, the diffraction of the multistage micro-mirror and the microlens array have no effect on the recovery spectrum when the working band of the system is 3.7-4.8 μm. Finally, in order to verify the accuracy of the system design results, an optical simulation software is used to simulate the infrared micro-Fourier transform spectrum. The accuracy of the system model is verified by the simulation that the reconstructed spectrum is in agreement with the ideal spectral curve and the actual spectral recovery error is 2.89%. The medium-wave infrared micro-static Fourier transform spectrometer has no movable parts and adopts micro-optics element to replace the traditional infrared lens. Therefore, it has the advantages of not only good stability, but also small size and light weight so that it is helpful in on-line monitoring applications and provides a new design idea about the micro-Fourier transform spectrometer.
      通信作者: 梁静秋, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn ; 梁中翥, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61575193,61627819,61376122,6173000222,61727818)、吉林省科技发展计划(批准号:20170204077GX,20150204072GX,20150520101JH,20150101049JC)和中国科学院创新促进会基金(批准号:2014193)资助的课题.
      Corresponding author: Liang Jing-Qiu, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn ; Liang Zhong-Zhu, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant Nos. 61575193, 61627819, 61376122, 6173000222, 61727818), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20170204077GX, 20150204072GX, 20150520101JH, 20150101049JC), and the State Key Laboratory of Applied Optics Independent Fund and Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2014193).
    [1]

    Cai Q S, Huang M, Han W, Cong L X, Lu X N 2017 Acta Phys. Sin. 66 160702 (in Chinese) [才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁 2017 66 160702]

    [2]

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204 (in Chinese) [单昌功, 王薇刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204]

    [3]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese) [于慧, 张瑞, 李克武, 薛锐, 王志斌 2017 66 054201]

    [4]

    Wu M, Cui L, Wang G, Ling X F, Zhao H M, Xu Z 2017 Spectrosc. Spec. Anal. 37 733 (in Chinese) [吴敏, 崔龙, 王港, 凌晓锋, 赵红梅, 徐智 2017 光谱学与光谱分析 37 733]

    [5]

    Podmore H, Scott A, Cheben P, Velasco A V, Schmid J H, Vachon M, Lee R 2017 Opt. Lett. 42 1440

    [6]

    Nie X, Ryckeboer E, Roelkens G, Baets R 2017 Opt. Express 25 A409

    [7]

    Akca B 2017 Opt. Express 25 1487

    [8]

    Watanabe A, Furukawa H 2018 Opt. Commun. 413 8

    [9]

    Rutkowski L, Johansson A C, Zhao G, Hausmaninger T, Khodabakhsh A, Axner O, Foltynowicz A 2017 Opt. Express 25 21711

    [10]

    Talghader J J, Gawarikar A S, Shea R P 2012 Light-Sci. Appl. 1 e24

    [11]

    Gross K C, Bradley K C, Perram G P 2010 Environ. Sci. Technol. 44 9390

    [12]

    Yin X H, Steinle T, Huang L L, Taubner T, Wutting M, Zentgraf T, Giessen H 2017 Light-Sci. Appl. 6 e17016

    [13]

    Hegyi A 2017 Opt. Express 25 17402

    [14]

    Shtanko A E, Kalenkov G S, Kalenkov S G 2017 J. Opt. Soc. Am. B 34 B49

    [15]

    Wang W, Samuelson S R, Chen J, Xie H 2015 IEEE Photon. Technol. 27 1418

    [16]

    Hook S J, Kahle A B 1996 Remote Sens. Environ. 56 172

    [17]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 29 1142 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 29 1142]

    [18]

    Fu J G, Liang J Q, Liang Z Z 2012 Acta Opt. Sin. 32 266 (in Chinese) [付建国, 梁静秋, 梁中翥 2012 光学学报 32 266]

    [19]

    Gao J H, Liang Z Z, Liang J Q, Wang W B, L J G, Qin Y X 2017 Appl. Spectrosc. 71 1348

    [20]

    Davidson N, Friesem A A, Hasman E 1993 Appl. Opt. 32 4770

    [21]

    Wood A P 1992 Appl. Opt. 31 2253

    [22]

    Riedl M J 1996 Appl. Opt. 35 6833

    [23]

    Zhang S Q, Zhou L Y, Xue C X, Wang L 2017 Appl. Opt. 56 7442

    [24]

    Pan Y Q, Zhu C, Hang L X, Song J J 2004 Laser Infrar. 34 372 (in Chinese) [潘永强, 朱昌, 杭凌侠, 宋俊杰 2004 激光与红外 34 372]

    [25]

    Yang G G 2008 Micro-optics and System (Zhejiang:Zhejiang University Press) pp15-20 (in Chinese) [杨国光 2008 微光学与系统(浙江:浙江大学出版社)第15–20页]

    [26]

    L N G 2007 Fourier Optics (3rd Ed.) (Beijing:China Machine Press) pp89-112 (in Chinese) [吕乃光 2007 傅里叶光学(第三版) (北京:中国机械工业出版社)第89–112页]

  • [1]

    Cai Q S, Huang M, Han W, Cong L X, Lu X N 2017 Acta Phys. Sin. 66 160702 (in Chinese) [才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁 2017 66 160702]

    [2]

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204 (in Chinese) [单昌功, 王薇刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 66 220204]

    [3]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese) [于慧, 张瑞, 李克武, 薛锐, 王志斌 2017 66 054201]

    [4]

    Wu M, Cui L, Wang G, Ling X F, Zhao H M, Xu Z 2017 Spectrosc. Spec. Anal. 37 733 (in Chinese) [吴敏, 崔龙, 王港, 凌晓锋, 赵红梅, 徐智 2017 光谱学与光谱分析 37 733]

    [5]

    Podmore H, Scott A, Cheben P, Velasco A V, Schmid J H, Vachon M, Lee R 2017 Opt. Lett. 42 1440

    [6]

    Nie X, Ryckeboer E, Roelkens G, Baets R 2017 Opt. Express 25 A409

    [7]

    Akca B 2017 Opt. Express 25 1487

    [8]

    Watanabe A, Furukawa H 2018 Opt. Commun. 413 8

    [9]

    Rutkowski L, Johansson A C, Zhao G, Hausmaninger T, Khodabakhsh A, Axner O, Foltynowicz A 2017 Opt. Express 25 21711

    [10]

    Talghader J J, Gawarikar A S, Shea R P 2012 Light-Sci. Appl. 1 e24

    [11]

    Gross K C, Bradley K C, Perram G P 2010 Environ. Sci. Technol. 44 9390

    [12]

    Yin X H, Steinle T, Huang L L, Taubner T, Wutting M, Zentgraf T, Giessen H 2017 Light-Sci. Appl. 6 e17016

    [13]

    Hegyi A 2017 Opt. Express 25 17402

    [14]

    Shtanko A E, Kalenkov G S, Kalenkov S G 2017 J. Opt. Soc. Am. B 34 B49

    [15]

    Wang W, Samuelson S R, Chen J, Xie H 2015 IEEE Photon. Technol. 27 1418

    [16]

    Hook S J, Kahle A B 1996 Remote Sens. Environ. 56 172

    [17]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 29 1142 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 29 1142]

    [18]

    Fu J G, Liang J Q, Liang Z Z 2012 Acta Opt. Sin. 32 266 (in Chinese) [付建国, 梁静秋, 梁中翥 2012 光学学报 32 266]

    [19]

    Gao J H, Liang Z Z, Liang J Q, Wang W B, L J G, Qin Y X 2017 Appl. Spectrosc. 71 1348

    [20]

    Davidson N, Friesem A A, Hasman E 1993 Appl. Opt. 32 4770

    [21]

    Wood A P 1992 Appl. Opt. 31 2253

    [22]

    Riedl M J 1996 Appl. Opt. 35 6833

    [23]

    Zhang S Q, Zhou L Y, Xue C X, Wang L 2017 Appl. Opt. 56 7442

    [24]

    Pan Y Q, Zhu C, Hang L X, Song J J 2004 Laser Infrar. 34 372 (in Chinese) [潘永强, 朱昌, 杭凌侠, 宋俊杰 2004 激光与红外 34 372]

    [25]

    Yang G G 2008 Micro-optics and System (Zhejiang:Zhejiang University Press) pp15-20 (in Chinese) [杨国光 2008 微光学与系统(浙江:浙江大学出版社)第15–20页]

    [26]

    L N G 2007 Fourier Optics (3rd Ed.) (Beijing:China Machine Press) pp89-112 (in Chinese) [吕乃光 2007 傅里叶光学(第三版) (北京:中国机械工业出版社)第89–112页]

  • [1] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像.  , 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [2] 周宁, 张兰芝, 李东伟, 常峻巍, 王毕艺, 汤磊, 林景全, 郝作强. 飞秒平顶光束经微透镜阵列在熔融石英中的成丝及其超连续辐射.  , 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [3] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析.  , 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [4] 乔小溪, 张向军, 田煜, 孟永钢. 微结构阵列对近壁面层液体运动规律的影响.  , 2017, 66(4): 044703. doi: 10.7498/aps.66.044703
    [5] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究.  , 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法.  , 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [7] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究.  , 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [8] 李娜, 贾迪, 赵慧洁, 苏云, 李妥妥. 基于改进维纳逆滤波的衍射成像光谱仪数据误差分析与重构.  , 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [9] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深.  , 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [10] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究.  , 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析.  , 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [12] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究.  , 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [13] 刘英, 孙强, 卢振武, 曲锋, 吴宏圣, 李淳. 折射/谐衍射红外双波段成像光谱仪系统研究.  , 2010, 59(10): 6980-6987. doi: 10.7498/aps.59.6980
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究.  , 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 程 琳, 丁训良, 刘志国, 潘秋丽, 初学莲, 冯松林. 一种新型的微束X射线荧光谱仪及其在考古学中的应用.  , 2007, 56(12): 6894-6898. doi: 10.7498/aps.56.6894
    [16] 王栋栋, 陈云琳, 李 兵, 颜采繁, 许京军, 张光寅. 利用光衍射效应探测周期极化微结构晶体.  , 2007, 56(12): 7153-7157. doi: 10.7498/aps.56.7153
    [17] 熊志铭, 张青川, 陈大鹏, 伍小平, 郭哲颖, 董凤良, 缪正宇, 李超波. 光学读出微梁阵列红外成像及性能分析.  , 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [18] 缪正宇, 张青川, 陈大鹏, 伍小平, 李超波, 郭哲颖, 董凤良, 熊志铭. 双材料微梁阵列室温物体红外成像.  , 2006, 55(7): 3208-3214. doi: 10.7498/aps.55.3208
    [19] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析.  , 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [20] 程光华, 王屹山, 刘 青, 赵 卫, 陈国夫. 用飞秒激光脉冲在PMMA内页面式写入三维光存储的研究.  , 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
计量
  • 文章访问数:  8119
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2017-12-30
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map