Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super resolution of aerial image by means of polyphase components reconstruction

He Lin-Yang Liu Jing-Hong Li Gang

Citation:

Super resolution of aerial image by means of polyphase components reconstruction

He Lin-Yang, Liu Jing-Hong, Li Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multi-frame super resolution reconstruction is a technology for obtaining a high resolution image from a set of blurred and aliased low resolution images. The most popular and widely used super resolution methods are motion based. However, the estimation of motion information (registration) is very difficult, computationally expensive and inaccurate, especially for aerial image. The sub-pixel registration error restricts the performance of the subsequent super resolution. Instead of trying to parameterize the motion estimation model, this paper proposes an image super resolution framework based on the polyphase components reconstruction algorithm and an improved steering kernel regression algorithm. Given an image observation model, a reversible 2D polyphase decomposition, which breaks down a high resolution image into polyphase components, is obtained. Though the assumption of diversity sampling, this paper adopts a fundamentally different approach, in which the low-resolution frames is used as the basis and the reference frame as the reference sub-polyphase component of the high resolution image for recovering the polyphase components of the high resolution image. The polyphase components, which fuse the low resolution frames with the complementary details, can be obtained by computing their expansion coefficients in terms of this basis using the available sub-polyphase components and then inversely transforming them into a high resolution image. This paper accomplishes this by formulating the problem as the maximum likelihood estimation, which guarantees a close-to-perfect solution. Furthermore, this paper proposes an improved steering kernel regression algorithm, to help restore the fusion image with mild blur and random noise. This paper adaptively refines the steering kernel regression function according to the local region context and structures. Thus, this new algorithm not only effectively combines denoising and deblurring together, but also preserves the edge information. Our framework develops an efficient and stable algorithm to tackle the huge size and ill-posedness of the super resolution problem, and improves the computational efficiency via avoiding registration and iterative computation. Several experimental results on synthetic data illustrate that our method outperforms the state-of-the-art methods in quantitative and qualitative comparisons. The proposed super resolution algorithm can indeed reconstruct high-frequency information which is otherwise unavailable in the single LR image. It can effectively suppress blur and noise, and produce visually pleasing resolution enhancement in aerial images.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60902067), and the Key Programs for Science and Technology Development of Jilin Province, China (Grant No. 11ZDGG001).
    [1]

    Park S C, Park M K, Kang M G 2003 IEEE Signal Proc. Mag. 20 21

    [2]

    Deng C Z, Tian W, Wang S Q, Zhu H S, Wu C M, Xiong Z W, Zhong W 2014 Opt. Precision Eng. 22 1648 (in Chinese) [邓承志, 田伟, 汪胜前, 朱华生, 吴朝明, 熊志文, 钟威 2014光学精密工程 22 1648]

    [3]

    Ruan Q Q 2005 Physics 34 1 (in Chinese) [阮秋琦2005 物理 34 1]

    [4]

    Farsiu S, Robinson D 2004 IEEE Trans. Image Process. 13 1327

    [5]

    Peng Z M, Jing L, He Y M, Zhang P 2014 Opt. Precision Eng. 22 169 (in Chinese) [彭真明, 景亮, 何燕敏, 张萍 2014光学精密工程 22 169]

    [6]

    Yang W B, Zhu M, Liu Z M, Chen D C 2014 Opt. Precision Eng. 22 2247 (in Chinese) [杨文波, 朱明, 刘志明, 陈东成 2014光学精密工程 22 2247]

    [7]

    Tekalp A, Ozkan M, Sezan M 1992 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing San Francisco, USA, March 23-26, 1992 p169

    [8]

    Tsai R Y, Huang T S 1984 Adv. Comput. Vis. Image Process. 1 317

    [9]

    Chen Y N, Jin W Q, Zhao L, Zhao L 2009 Acta Phys. Sin. 58 264 (in Chinese) [陈翼男, 金伟其, 赵磊, 赵琳 2009 58 264]

    [10]

    Su B H, Jin W Q, Niu L H, Liu G R, Liu M Q 2001 Acta Photon. Sin. 3 492 (in Chinese) [苏秉华, 金伟其, 牛丽红, 刘广荣, 刘明奇2001光子学报 3 492]

    [11]

    Tom B C, Katsaggelos A K 1996 Proceedings of SPIE Conference of Visual Communications and Image Processing Lausanne, Switzerland 1996 p1430

    [12]

    Zhou S B, Yuan Y, Su L J 2013 Acta Phys. Sin. 62 130701 (in Chinese) [周树波, 原燕, 苏丽娟 2013 62 130701]

    [13]

    Peyman M 2011 Super Resolution Imaging (Vol. 1) (New York:Benjamin) pp1-23

    [14]

    Gong W G, Pan F Y, Li J M 2014 Opt. Precision Eng. 22 721 (in Chinese) [龚卫国, 潘飞宇, 李进明 2014光学精密工程 22 721]

    [15]

    Liu H C, Li S T, Yin H T 2013 Opt. Commun. 289 45

    [16]

    Deng C Z, Tian W, Chen P, Wang S Q, Zhu H S, Hu S F, 2014 Acta Phys. Sin. 63 044202 in Chinese 2014 63 044202 (in Chinese) [邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤 2014 63 044202]

    [17]

    Alam M S, Bognar J G, Hardie R C 2000 IEEE Trans. Instrum. 49 915

    [18]

    Filip S, Gabriel C, Jan F 2006 IEEE Trans. Image Process. 16 9

    [19]

    Fasal M A 2010 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [20]

    Hiroyuki T, Sina F, Peyman M 2007 IEEE Trans. Image Process. 16 349

    [21]

    Kim S Y, Cho W, Koschan A, Abidi M A 2011 Proceedings of the 7th International Symposium on Visual Computing LasVegas, Nevada, September 26-28, 2011 p291

    [22]

    Antigoni P, Vassilis A 2009 Opt. Eng. 48 117004

    [23]

    Yang J, Wright J, Huang T 2010 IEEE Trans. Image Process. 19 2861

  • [1]

    Park S C, Park M K, Kang M G 2003 IEEE Signal Proc. Mag. 20 21

    [2]

    Deng C Z, Tian W, Wang S Q, Zhu H S, Wu C M, Xiong Z W, Zhong W 2014 Opt. Precision Eng. 22 1648 (in Chinese) [邓承志, 田伟, 汪胜前, 朱华生, 吴朝明, 熊志文, 钟威 2014光学精密工程 22 1648]

    [3]

    Ruan Q Q 2005 Physics 34 1 (in Chinese) [阮秋琦2005 物理 34 1]

    [4]

    Farsiu S, Robinson D 2004 IEEE Trans. Image Process. 13 1327

    [5]

    Peng Z M, Jing L, He Y M, Zhang P 2014 Opt. Precision Eng. 22 169 (in Chinese) [彭真明, 景亮, 何燕敏, 张萍 2014光学精密工程 22 169]

    [6]

    Yang W B, Zhu M, Liu Z M, Chen D C 2014 Opt. Precision Eng. 22 2247 (in Chinese) [杨文波, 朱明, 刘志明, 陈东成 2014光学精密工程 22 2247]

    [7]

    Tekalp A, Ozkan M, Sezan M 1992 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing San Francisco, USA, March 23-26, 1992 p169

    [8]

    Tsai R Y, Huang T S 1984 Adv. Comput. Vis. Image Process. 1 317

    [9]

    Chen Y N, Jin W Q, Zhao L, Zhao L 2009 Acta Phys. Sin. 58 264 (in Chinese) [陈翼男, 金伟其, 赵磊, 赵琳 2009 58 264]

    [10]

    Su B H, Jin W Q, Niu L H, Liu G R, Liu M Q 2001 Acta Photon. Sin. 3 492 (in Chinese) [苏秉华, 金伟其, 牛丽红, 刘广荣, 刘明奇2001光子学报 3 492]

    [11]

    Tom B C, Katsaggelos A K 1996 Proceedings of SPIE Conference of Visual Communications and Image Processing Lausanne, Switzerland 1996 p1430

    [12]

    Zhou S B, Yuan Y, Su L J 2013 Acta Phys. Sin. 62 130701 (in Chinese) [周树波, 原燕, 苏丽娟 2013 62 130701]

    [13]

    Peyman M 2011 Super Resolution Imaging (Vol. 1) (New York:Benjamin) pp1-23

    [14]

    Gong W G, Pan F Y, Li J M 2014 Opt. Precision Eng. 22 721 (in Chinese) [龚卫国, 潘飞宇, 李进明 2014光学精密工程 22 721]

    [15]

    Liu H C, Li S T, Yin H T 2013 Opt. Commun. 289 45

    [16]

    Deng C Z, Tian W, Chen P, Wang S Q, Zhu H S, Hu S F, 2014 Acta Phys. Sin. 63 044202 in Chinese 2014 63 044202 (in Chinese) [邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤 2014 63 044202]

    [17]

    Alam M S, Bognar J G, Hardie R C 2000 IEEE Trans. Instrum. 49 915

    [18]

    Filip S, Gabriel C, Jan F 2006 IEEE Trans. Image Process. 16 9

    [19]

    Fasal M A 2010 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [20]

    Hiroyuki T, Sina F, Peyman M 2007 IEEE Trans. Image Process. 16 349

    [21]

    Kim S Y, Cho W, Koschan A, Abidi M A 2011 Proceedings of the 7th International Symposium on Visual Computing LasVegas, Nevada, September 26-28, 2011 p291

    [22]

    Antigoni P, Vassilis A 2009 Opt. Eng. 48 117004

    [23]

    Yang J, Wright J, Huang T 2010 IEEE Trans. Image Process. 19 2861

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie. Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating. Acta Physica Sinica, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [5] Chen Jie, Zhou Xin, Bai Xing, Li Cong, Xu Zhao, Ni Yang. Equivalence analysis of highly scattering process and double random phase encryption process. Acta Physica Sinica, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [6] Sun Shi-Feng. High-resolution coded aperture X-ray fluorescence imaging with separable masks. Acta Physica Sinica, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [7] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [8] Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua. Far-field time reversal subwavelength imaging of sources based on grating structure. Acta Physica Sinica, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [9] Du Jin-Song, Gao Yang, Bi Xin, Qi Wei-Zhi, Huang Lin, Rong Jian. S-band microwave-Induced thermo-acoustic tomography system. Acta Physica Sinica, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [10] Han Yu, Li Lei, Yan Bin, Xi Xiao-Qi, Hu Guo-En. A half-covered helical cone-beam reconstruction algorithm based on the Radon inversion transformation. Acta Physica Sinica, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [11] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [12] Wang Sheng, Zou Yu-Bin, Wen Wei-Wei, Li Hang, Liu Shu-Quan, Wang Hu, Lu Yuan-Rong, Tang Guo-You, Guo Zhi-Yu. Study of coded source neutron imaging based on a compact accelerator. Acta Physica Sinica, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [13] Liang Mu-Sheng, Wang Bing-Zhong, Zhang Zhi-Min, Ding Shuai, Zang Rui. Subwavelength antenna array based on far-field time reversal. Acta Physica Sinica, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [14] Wang Xian-Chao, Yan Bin, Liu Hong-Kui, Li Lei, Wei Xing, Hu Guo-En. Efficient reconstruction from truncated data in circular cone-beam CT. Acta Physica Sinica, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [15] Yang Kun, Liu Xin-Xin, Li Xiao-Wei. Influence of data interpolation on positron emission tomography image tomography reconstruction. Acta Physica Sinica, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [16] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [17] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [18] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [19] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
Metrics
  • Abstract views:  6230
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2014
  • Accepted Date:  16 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map