Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical properties of graphene plasmons and their potential applications

Yang Xiao-Xia Kong Xiang-Tian Dai Qing

Citation:

Optical properties of graphene plasmons and their potential applications

Yang Xiao-Xia, Kong Xiang-Tian, Dai Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene plasmons have aroused a great deal of research interest in recent years due to their unique features such as electrical tunability, ultra-strong field confinement and relatively low intrinsic damping. In this review paper, we summarize the fundamental optical properties of localized and propagating plasmons supported by graphene, and the experimental techniques for excitation and detection of them, with focusing on their dispersion relations and plasmon-phonon coupling mechanism. In general, the dispersion of graphene plasmons is affected by the Fermi level of graphene and the dielectric environment. The graphene plasmons can exist in a broad spectrum range from mid-infrared to terahertz. This has been experimentally verified for both the localized and propagation plasmons in graphene. On the one hand, the excitation frequency and confinement of localized plasmons supported by graphene micro/nano-structures are constrained by the structural geometry. Additionally, influenced from the tunability of the optical conductivity of graphene, the excitation frequency of graphene plasmons can be tuned by electrostatic or chemical doping. On the other hand, propagating plasmons have been launched and detected by using scattering-type scanning near-field optical microscopy. This technique provides the real-space imaging of the electromagnetic fields of plasmons, thereby directly confirming the existence of the graphene plasmons and verifying their properties predicted theoretically. In a similar regime, the launching and controlling of the propagating plasmons have also been demonstrated by using resonant metal antennas. Compared to metal plasmons, graphene plasmons are much more easily affected by the surroundings due to their scattering from impurity charges and coupling with substrate phonons. In particular, graphene plasmons can hybridize strongly with substrate phonons and there are a series of effects on plasmon properties such as resonance frequency, intensity and plasmon lifetime. The designing of the dielectric surrounding can effectively manipulate the graphene plasmons. Finally, we review the emerging applications of graphene plasmon in the mid-infrared and terahertz, such as electro-optical modulators and enhanced mid-infrared spectroscopy.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51372045).
    [1]

    Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149

    [2]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)

    [3]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [4]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3

    [5]

    Ozbay E 2006 Science 311 189

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [7]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689

    [8]

    Low T, Avouris P 2014 ACS Nano 2 1086

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Maier S A 2012 Nat. Phys. 8 581

    [11]

    de Abajo F J G 2014 ACS Photon. 1 135

    [12]

    Stauber T 2014 J. Phys.: Condens. Matter 26 123201

    [13]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [14]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [15]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169

    [16]

    Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [18]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [20]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541

    [23]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [24]

    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821

    [25]

    Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787

    [26]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [27]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [28]

    Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422

    [29]

    Liu Y, Willis R F 2010 Phys. Rev. B 81 081406

    [30]

    Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413

    [31]

    Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406

    [32]

    Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409

    [33]

    Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515

    [34]

    Fano U 1961 Phys. Rev. 124 1866

    [35]

    Harris S E 1997 Phys. Today 50 36

    [36]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431

    [37]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [38]

    Vakil A, Engheta N 2011 Science 332 1291

    [39]

    Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507

    [40]

    Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1

    [41]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [42]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401

    [43]

    Chen P Y, Alù A 2011 ACS Nano 5 5855

    [44]

    Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592

    [45]

    Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628

    [46]

    Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111

    [47]

    Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629

    [48]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405

    [49]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299

    [50]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388

    [51]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330

    [52]

    Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227

    [53]

    Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581

    [54]

    Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573

    [55]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876

    [56]

    Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439

  • [1]

    Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149

    [2]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)

    [3]

    Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [4]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3

    [5]

    Ozbay E 2006 Science 311 189

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [7]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689

    [8]

    Low T, Avouris P 2014 ACS Nano 2 1086

    [9]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [10]

    Maier S A 2012 Nat. Phys. 8 581

    [11]

    de Abajo F J G 2014 ACS Photon. 1 135

    [12]

    Stauber T 2014 J. Phys.: Condens. Matter 26 123201

    [13]

    Bao Q L, Loh K P 2012 ACS Nano 6 3677

    [14]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [15]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169

    [16]

    Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [18]

    Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [19]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222

    [20]

    Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418

    [21]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [22]

    Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541

    [23]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [24]

    Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821

    [25]

    Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787

    [26]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159

    [27]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [28]

    Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422

    [29]

    Liu Y, Willis R F 2010 Phys. Rev. B 81 081406

    [30]

    Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413

    [31]

    Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406

    [32]

    Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409

    [33]

    Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515

    [34]

    Fano U 1961 Phys. Rev. 124 1866

    [35]

    Harris S E 1997 Phys. Today 50 36

    [36]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431

    [37]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [38]

    Vakil A, Engheta N 2011 Science 332 1291

    [39]

    Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507

    [40]

    Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1

    [41]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698

    [42]

    Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401

    [43]

    Chen P Y, Alù A 2011 ACS Nano 5 5855

    [44]

    Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592

    [45]

    Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628

    [46]

    Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111

    [47]

    Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629

    [48]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405

    [49]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299

    [50]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388

    [51]

    Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330

    [52]

    Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227

    [53]

    Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581

    [54]

    Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573

    [55]

    Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876

    [56]

    Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] Zhao Xiang-Yu, Qin Yu-Lu, Ji Bo-Yu, Lang Peng, Song Xiao-Wei, Lin Jing-Quan. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency. Acta Physica Sinica, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [6] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] Zhao Lin, Feng Yi-Jun. Optical field enhancements and applications by epsilon-near-zero medium with dielectric dopant. Acta Physica Sinica, 2020, 69(15): 154101. doi: 10.7498/aps.69.20200147
    [8] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [9] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [10] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [11] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [12] Shu Fang-Zhou, Fan Ren-Hao, Wang Jia-Nan, Peng Ru-Wen, Wang Mu. Advances in dynamically tunable plasmonic materials and devices. Acta Physica Sinica, 2019, 68(14): 147303. doi: 10.7498/aps.68.20190469
    [13] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [15] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [16] Lu Ya-Xin, Ma Ning. The coupled electromagnetic field effects on quantum magnetic oscillations of graphene. Acta Physica Sinica, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [17] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [18] Sun Xue-Fei, Wang Lu-Xia. Surface plasmon enhancement effect in molecular excitation. Acta Physica Sinica, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [19] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [20] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
Metrics
  • Abstract views:  13500
  • PDF Downloads:  2614
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2014
  • Accepted Date:  06 January 2015
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map