Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion

Qiao Xiu-Mei Zheng Wu-Di Gao Yao-Ming

Citation:

Simulation of X-ray spectrum of Ar tracer in indirectly driven implosion

Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As the X-ray spectrum of tracer in inertial confinement fusion implosion target is usually used to infer electron temperature, density, and the mixture of fuel and shell, it is necessary to study the relation between the characteristics of X-ray emission spectrum and the implosion process, which is helpful for inferring the implosion status. Under the condition of SGIII prototype, approximately 0.5% atomic percent of Ar atoms are doped in an indirectly driven implosion target, X-ray spectrum of Ar is numerically simulated. In this article, the influences of line re-absorption effect, tracer concentration, and profile of fuel plasma state on the emission spectrum are studied. The relation between the temporal evolution of the emission spectrum and the implosion process is also investigated. It is found that as the tracer concentration increases up to ~1%, the X-ray intensity is enhanced, but the influence of line re-absorption becomes severe. Temporal evolution shows that the peak time of Ar X-ray intensity is almost the same as that of neutron production (the former delays about 15 ps, which usually cannot be resolved). As is well known, the strong line emission occurs in the plasma with high temperature, high electron density, and proper ionization. The detailed analysis shows that at the peak emission time, as the core Ar plasma is over ionized, the main X-ray line emission region is located near the boundary region of the fuel, and this thin shell, whose thickness is about 4 μm and whose volume accounts for 56% of the total fuel plasma volume, emits the X-ray whose intensity is about 72% of the total line intensity. Therefore, the space-averaged plasma temperature and density, which are obtained by fitting the emission spectrum, mainly reflect the plasma state in this region.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475033).
    [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

  • [1]

    Hammel B A, Keane C J, Dittrich T R, Kania D R, Kilkenny J D, Lee R W, Kevedahl W K 1994 J. Quant. Spectrosc. Ra. Transfer 51 113

    [2]

    Woolsey N C, Hammel B A, Keane C J, Asfaw A, Back C A, Moreno J C, Nash J K, Calisti A, Mossé C, Stamm R, Talin B, Klein L, Lee R W 1997 Phys. Rev. E 56 2314

    [3]

    Welser-Sherrill L, Mancini R C, Koch J A, Izumi N, Tommasini R, Haan S W, Haynes D A, Golovkin I E, Macfarlane J J, Delettrez J A, Marshall F J, Regan S P, Smalyuk V A, Kyrala G 2007 Phys. Rev. E 76 056403

    [4]

    Florido R, Mancini R C, Nagayama T, Tommasini R, Delettrez J A, Regan S P, Yaakobi B 2011 Phys. Rev. E 83 066408

    [5]

    Hammel B A, Scott H A, Regan S P, Cerjan C, Clark D S, Edwards M J, Epstein R, Glenzer S H, Haan S W, Izumi N, Koch J A, Kyrala G A, Landen O L, Langer S H, Peterson K, Smalyuk V A, Suter L J, Wilson D C 2011 Phys. Plasmas 18 056310

    [6]

    Keane C J, Pollak G W, Cook R C, Dittrich T R, Hammel B A, Landen L, Langer S H, Levedahl W K, Munro D H, Scott H A, Zimmerman G B 1995 J. Quant. Spectrosc. Ra. Transfer 54 207

    [7]

    Langer S H, Scott H A, Marinak M M, Landen O L 2001 J. Quant. Spectrosc. Ra. Transfer 71 479

    [8]

    Zhang J Y, Yang G H, Miao W Y, Ding Y N 2006 High Power Laser Particle Beams 18 939 (in Chinese) [张继彦, 杨国洪, 缪文勇, 丁耀南 2006 强激光与粒子束 18 939]

    [9]

    Gao Y M, Li M, Li Y S, Kang D G, Li Y S 2011 High Power Laser Particle Beams 23 693 (in Chinese) [高耀明, 李蒙, 李永升, 康洞国, 李沄生 2011 强激光与粒子束 23 693]

    [10]

    Duan B, Li Y M, Fang Q Y, Zhang J Y 2005 High Power Laser Particle Beams 17 55 (in Chinese) [段斌, 李月明, 方泉玉, 张继彦 2005 强激光与粒子束 17 55]

    [11]

    Qiao X M, Zheng W D, Gao Y M, Ye W H 2012 Acta Phys. Sin. 61 175201 (in Chinese) [乔秀梅, 郑无敌, 高耀明, 叶文华 2012 61 175201]

    [12]

    Zhou J Y, Huang T X, Meng L 2008 High Power Laser Particle Beams 20 1658 (in Chinese) [周近宇, 黄天眩, 蒙林 2008 强激光与粒子束 20 1658]

    [13]

    Welser L A, Mancini R C, Koch J A, Izumi N, Dalhed H, Scott H, Barbee Jr T W, Lee R W, Golovkin I E, Marshall F, Delettrez J, Klein L 2003 J. Quant. Spectrosc. Ra. Transfer 81 487

    [14]

    Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosses C, Godbert L, Stamm R, Talin B, Hooper C F, Asfaw A, Klein L S, Lee R W 1997 J. Quant. Spectrosc. Ra. Transfer 58 975

    [15]

    Nagayama T, Mancini R C, Florido R, Mayer D, Tommasini R, Koch J A, Pelettrez J A, Regan S P, Smalyuk V A 2014 Phys. Plasmas 21 050702

    [16]

    Koch J, Izumi N, Welser L A, Mancini R C 2008 High Energy Dens. Phys. 4 1

  • [1] Ma Guang-Peng, Gong Zhen-Quan, Nie Meng-Jiao, Cao Hui-Qun, Qu Jun-Le, Lin Dan-Ying, Yu Bin. Multifocus double-helix point spread function microscopy for 3D single particle tracking. Acta Physica Sinica, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] Wang Shu-Xing, Li Tian-Jun, Huang Xin-Chao, Zhu Lin-Fan. X-ray cavity quantum optics with inner-shell transitions. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241218
    [3] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [4] Shen Bai-Fei, Ji Liang-Liang, Zhang Xiao-Mei, Bu Zhi-Gang, Xu Jian-Cai. High field X-ray laser physics. Acta Physica Sinica, 2021, 70(8): 084101. doi: 10.7498/aps.70.20210096
    [5] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] Wang Ya-Qin, Hu Guang-Yue, Zhao Bin, Zheng Jian. Spectrally smooth X-ray source produced by laser direct driven DT implosion target on SG-Ⅲ laser facility. Acta Physica Sinica, 2017, 66(11): 115202. doi: 10.7498/aps.66.115202
    [7] Yan Ji, Zhang Xing, Zheng Jian-Hua, Yuan Yong-Teng, Kang Dong-Guo, Ge Feng-Jun, Chen Li, Song Zi-Feng, Yuan Zheng, Jiang Wei, Yu Bo, Chen Bo-Lun, Pu Yu-Dong, Huang Tian-Xuan. Variations of implosion performance with compression ratio in plastic DD filled capsule implosion experiment. Acta Physica Sinica, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [8] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [9] Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping. Electromagnetic pulse emission produced by Z pinch implosions. Acta Physica Sinica, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [10] Pang Zhe, Wang Shuang, Li Hui, Xu Chun-Hua, Li Ming. A study on the mechanism of RecA in homologous recognition by using single molecule fluorescence tracking. Acta Physica Sinica, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [11] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] Qiao Xiu-Mei, Zheng Wu-Di, Gao Yao-Ming, Ye Wen-Hua. Simulation of spectrum of doped Ar in indirectly driven implosion target. Acta Physica Sinica, 2012, 61(17): 175201. doi: 10.7498/aps.61.175201
    [13] Cao Si, Gong Jia, Zhong Cheng, Li Jin, Jiang Yi-Ming. Transport mechanism of copper thin film oxidation by isotopic labeling. Acta Physica Sinica, 2011, 60(7): 078101. doi: 10.7498/aps.60.078101
    [14] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [15] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Yu Quan-Zhi, Wang Shou-Jun, Zhang Jie, Zhao Wei, Wang Guang-Chang, Wen Xian-Lun, Jiao Chun-Ye, He Ying-Ling, Zhang Shuang-Gen, Wang Xiang-Xian, Huang Wen-Zhong, Gu Yu-Qiu. Observation of the rear-side coherent transition radiation generated by hot electrons. Acta Physica Sinica, 2006, 55(10): 5362-5367. doi: 10.7498/aps.55.5362
    [17] Yan Fei, Zhang Jie, Dong Quan-Li, Lu Xin, Li Ying-Jun. Numerical simulation of x-ray lasers pumped by grazing incidence pulses. Acta Physica Sinica, 2005, 54(10): 4741-4746. doi: 10.7498/aps.54.4741
    [18] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [19] LIN ZUN-QI, ZHANG YAN-ZHAN, BI WU-JI, LU HAI-HE, HE XING-FA, ZHAO ZHI-WEN, WEI XIAO-CHUN, SHI A-YING, WANG XIAO-QIN, LIN KANG-CHUN, LI JIA-MING, DONG QI. STUDY OF LASER IMPLOSION DYNAMICS BY FOUR-FRAME X-RAY SHADOWGRAPHY AND THEORETICAL SIMULATION. Acta Physica Sinica, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
    [20] CAI WEI, GE SEN-LIN, WU ZI-QIN. THE CHARACTERISTIC X-RAY INTENSITY FACTORS OF THE PURE ELEMENT BULK SAMPLES. Acta Physica Sinica, 1981, 30(7): 895-907. doi: 10.7498/aps.30.895
Metrics
  • Abstract views:  5799
  • PDF Downloads:  391
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2014
  • Accepted Date:  29 August 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map