-
随着X射线光源品质的提升,X射线波段的量子调控成为了新兴的前沿领域,基于薄膜平面腔的X射线腔量子光学是其中一个重要分支。X射线腔量子光学研究始于原子核跃迁体系,近期兴起了调控原子内壳层跃迁的研究工作。原子内壳层跃迁存在丰富的候选体系和退激通道,极大地拓宽了X射线腔量子光学的研究范围。此外,内壳层激发及其退激通道对应着多种X射线谱学表征技术,促进X射线腔量子光学和谱学技术的融合,有望促成X射线谱学新技术的出现。本文概述了基于原子内壳层跃迁的X射线腔量子光学,介绍了基本的实验体系和实验方法、经典和量子理论模型与以及已经实现的一些量子光学现象。最后,本文将简介内壳层X射线腔量子光学仍需要解决的一些问题,同时展望未来的发展方向。In the last decade, X-ray quantum optics has emerged as a new research field, driven by significant advancements in X-ray sources such as new generation synchrotron radiations and X-ray free electron lasers, as well as improvements in X-ray methodologies and sample fabrication. A very successful physical platform is the X-ray planar thin-film cavity, also known as the X-ray cavity QED setup, which represents a significant branch of X-ray quantum optics. So far, most X-ray cavity quantum optical studies are based on the Mössbauer nuclear resonances. However, the scope of the applications is limited by the few available nuclear isotope candidates and the lack of general applicability. Recently, X-ray cavity quantum control in atomic inner-shell transitions has been realized in experiments where the cavity effects simultaneously modify the transition energy and the core-hole lifetime. These pioneer works suggest that the X-ray cavity quantum optics with inner-shell transitions will become a new promising platform. Actually, the core-hole state is the fundamental concept in a variety of modern X-ray spectroscopic techniques. Therefore, integrating X-ray quantum optics with X-ray spectroscopies could lead to potential applications in core-level spectroscopies communities.
In this review, we introduce the experimental systems for the X-ray cavity quantum optics with inner-shell transitions, including the cavity structure, sample fabrications, and experimental methods. We explain that X-ray thin-film cavity samples require high flux, high energy resolution, small beam divergence, and precise angular control, necessitating synchrotron radiations. The grazing reflectivity and fluorescence measurements are shown in Fig.1, along with a brief introduction to resonant inelastic X-ray scattering. We also describe the theoretical simulation tools, including the classical Parratt's algorithm, semi-classical matrix formalism, quantum optical theory based on the Jaynes-Cummings model, and the quantum Green's function method. We discuss the similarities and characteristics of the electronic inner-shell transition compared to the nuclear resonance. Based on the observables, such as reflectivity and fluorescence spectra, we introduce several recent works, including cavity-induced energy shift, Fano interference, and core-hole lifetime control. In conclusion, we summarize the review and discuss several future directions. In particular, designing new cavity structures is essential to addressing current debates on the cavity effects with inner-shell transitions and discovering new quantum optical phenomena. Integrating modern X-ray spectroscopies with X-ray cavity quantum optics is a promising research area that could lead to valuable applications. Furthermore, X-ray free-electron lasers, which offer much higher pulse intensity and much shorter pulse duration, will advance X-ray cavity quantum optics studies from linear to multiphoton and nonlinear regimes.-
Keywords:
- X-ray quantum optics /
- X-ray planar thin-film cavity /
- synchrotron radiation /
- inner-shell transition
-
[1] Pan J W 2024 Acta Phys. Sin. 73 010301. (in Chinese) [潘建伟 2024 73 010301]
[2] Adams B W, Buth C, Cavaletto S M, Cavaletto, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A,Röhlsberger R, Rostovtsev Y, Tamasaku K 2013 J. Mod. Opt. 60 2
[3] Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685
[4] Röhlsberger R, Evers J, Shwartz S 2020 Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, chap. Quantum and Nonlinear Optics with Hard X-Rays (Cham: Springer International Publishing), pp 1399-1431
[5] Röhlsberger R, Evers J 2021 Modern Mössbauer Spectroscopy 105
[6] Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502
[7] Röntgen W C 1895 Sitzung Physikal-Medicin Gesellschaft 137 132
[8] Planck M 1901 Annalen der physik 4 1
[9] ESRF website. https:www.esrf.fr/. [2024-11-12]
[10] APS website. https://www.aps.anl.gov/. [2024-11-12]
[11] SPring-8 website. http://www.spring8.or.jp/ja/. [2024-11-12]
[12] PETRA-III website. https://photon-science.desy.de/facilities/petra_iii/index_eng.html. [2024-11-12]
[13] Raimondi P, Carmignani N, Carver L R, Chavanne J, Farvacque L, Le Bec G, Martin D, Liuzzo S M, Perron T, White S 2021 Phys. Rev. Accel. Beams 24 110701
[14] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007
[15] Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932
[16] Huang Z, Ruth R D 2006 Phys. Rev. Lett. 96 144801
[17] Margraf R, Robles R, Halavanau A, Kryzywinski J, Li K, MacArthur J, Osaka T, Sakdinawat A, Sato T, Sun Y, Tamasaku K, Huang Z, Marcus G, Zhu D 2023 Nat. Photonics 17 878
[18] Adams B, Aeppli G, Allison T, Baron A Q, Bucksbaum P, Chumakov A I, Corder C, Cramer S P, DeBeer S, Ding Y, Evers J, Frisch J, Fuchs M, Grübel G, Hastings J B, Heyl C M, Holberg L, Huang Z, Ishikawa T, Kaldun A, Kim K J, Kolodziej T, Krzywinski J, Li Z, Liao W T, Lindberg R, Madsen A, Maxwell T, Monaco G, Nelson K, Palffy A, Porat G, Qin W, Raubenheimer T, Reis D A, Röhlsberger R, Santra R, Schoenlein R, Schünemann V, Shpyrko O, Shvyd’ko Y, Shwartz S, Singer A, Sinha S K, Sutton M, Tamasaku K, Wille H C, Yabashi M, Ye J, Zhu D 2019 arXiv:1903.09317 [physics.ins-det]
[19] Brown M, Peierls R E, Stern E A 1977 Phys. Rev. B 15 738
[20] Wei P S P, Lytle F W 1979 Phys. Rev. B 19 679
[21] Mössbauer R L 1958 Zeitschrift für Physik 151 124
[22] Röhlsberger R 2004 Nuclear condensed matter physics with synchrotron radiation: Basic principles, methodology and applications (Springer Science & Business Media), pp 1-312
[23] Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601
[24] Purcell E 1946 Phys. Rev. 69 681
[25] Scully M O 2009 Phys. Rev. Lett. 102 143601
[26] Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R 2010 Science 328 1248
[27] Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199
[28] Heeg K P, Evers J 2013 Phys. Rev. A 88 043828
[29] Heeg K P, Evers J 2015 Phys. Rev. A 91 063803
[30] Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396
[31] Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008
[32] Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710
[33] Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702
[34] Heeg K P, Wille H C, Schlage K, Guryeva T, Schumacher D, Uschmann I, Schulze K S, Marx B, Kämpfer T, Paulus G G, Röhlsberger R, Evers J 2013 Phys. Rev. Lett. 111 073601
[35] Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401
[36] Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445
[37] Heeg K P, Haber J, Schumacher D, Bocklage L, Wille H C, Schulze K S, Loetzsch R, Uschmann I, Paulus G G, Rüffer R, Röhlsberger R, Evers J 2015 Phys. Rev. Lett. 114 203601
[38] Kong X, Pálffy A 2016 Phys. Rev. Lett. 116 197402
[39] Haber J, Kong X, Strohm C, Willing S, Gollwitzer J, Bocklage L, Rüffer R, Pálffy A, Röhlsberger R 2017 Nat. Photonics 11 720
[40] Lentrodt D, Diekmann O, Keitel C H, Rotter S, Evers J 2023 Phys. Rev. Lett. 130 263602
[41] Velten S, Bocklage L, Zhang X, Schlage K, Panchwanee A, Sadashivaiah S, Sergeev I, Leupold O, Chumakov A I, Kocharovskaya O, Röhlsberger R 2024 Sci. Adv. 10 eadn9825
[42] Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565
[43] Ivchenko E, Poddubny A 2013 Phys. Solid State 55 905
[44] Cowan P L, Golovchenko J A, Robbins M F 1980 Phys. Rev. Lett. 44 1680
[45] Zegenhagen J, Kazimirov A 2013 X-ray Standing Wave Technique: Principles And Applications, vol. 7 (World Scientific), pp 122-131
[46] Kossel W, Loeck V, Voges H 1935 Zeitschrift für Physik 94 139
[47] Jonnard P, André J M, Bonnelle C, Bridou F, Pardo B 2002 Appl. Phys. Lett. 81 1524
[48] André J M, Jonnard P 2010 E. Phys. J. D 57 411
[49] André J, Jonnard P, Le Guen K, Bridou F 2015 Phys. Scr. 90 085503
[50] Li W B, Yuan X F, Zhu J T, Zhu J, Wang Z S 2014 Phys. Scr. 90 015804
[51] Feng X P, Ujihara K 1990 Phys. Rev. A 41 2668
[52] Ujihara K 1993 Opt. Commun. 101 179
[53] de Boer D K G 1991 Phys. Rev. B 44 498
[54] Ghose S K, Dev B N, Gupta A 2001 Phys. Rev. B 64 233403
[55] Pfeiffer F, David C, Burghammer M, Riekel C, Salditt T 2002 Science 297 230
[56] Salditt T, Krüger S P, Fuhse C, Bähtz C 2008 Phys. Rev. Lett. 100 184801
[57] Okamoto K, Noma T, Komoto A, Kubo W, Takahashi M, Iida A, Miyata H 2012 Phys. Rev. Lett. 109 233907
[58] Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677
[59] Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R 2019 Phys. Rev. Lett. 122 123608
[60] Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063
[61] Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602
[62] Gu B, Cavaletto S M, Nascimento D R, Khalil M, Govind N, Mukamel S 2021 Chem. Sci. 12 8088
[63] Gu B, Nenov A, Segatta F, Garavelli M, Mukamel S 2021 Phys. Rev. Lett. 126 053201
[64] Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703
[65] Vettier C 2012 Eur. Phys. J. Spec. Top. 208 3
[66] Fink J, Schierle E, Weschke E, Geck J 2013 Rep. Prog. Phys. 76 056502
[67] Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255
[68] Van Bokhoven J A, Lamberti C 2016 X-ray absorption and X-ray emission spectroscopy: theory and applications, vol. 1 (John Wiley & Sons), pp 125-149
[69] Kotani A, Shin S 2001 Rev. Mod. Phys. 73 203
[70] Schülke W 2007 Electron dynamics by inelastic X-ray scattering, vol. 7 (Oxford University Press), pp 377-485
[71] Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705
[72] CXRO website. https://henke.lbl.gov/optical_constants/. [2024-11-12]
[73] Shvyd’Ko Y 2004 X-ray optics: high-energy-resolution applications, vol. 98 (Springer Science &Business Media), pp 215-286
[74] Als-Nielsen J, McMorrow D 2011 Elements of modern X-ray physics (John Wiley & Sons), pp 207-238
[75] Heeg K P 2014 X-Ray quantum optics with Mössbauer nuclei in thin-film cavities. Ph.D. Dissertation, (Heidelberg: Ruperto-Carola-Universität of Heidelberg)
[76] Kong X 2016 Collective effects of nuclei in single x-ray photon superradiance. Ph.D. Dissertation, (Heidelberg: Ruprecht-Karls-Universität Heidelberg)
[77] Haber J F A 2016 Hard X-ray quantum optics in thin-film nanostructures. Ph.D. Dissertation, (Hamburg: Universität Hamburg)
[78] Huang X C 2020 X-Ray Quantum Optics studies based on Thin-Film planar Cavity. Ph.D. Dissertation, (Hefei: University of Science and Technology of China). (in Chinese) [黄新朝 2020 博士学位 论文 (合肥: 中国科学技术大学)
[79] Lentrodt D 2021 Ab initio approaches to x-ray cavity QED: From multi-mode theory to nonlinear dynamics of Mössbauer nuclei. Ph.D. Dissertation, (Heidelberg: Ruprecht-Karls-Universität Heidelberg)
[80] Li T J 2023 The studies of X-ray cavity quantum optics based on resonant scattering. Ph.D. Dissertation, (Hefei: University of Science and Technology of China). (in Chinese) [李天钧 2023 博士学位 论文 (合肥: 中国科学技术大学)
[81] Ma Z R 2023 Study of X-ray thin film planar cavities and Fano line shape. Ph.D. Dissertation,(Hefei: University of Science and Technology of China). (in Chinese) [马子茹 2023 博士学位论文(合肥: 中国科学技术大学)
[82] Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Radiat. 27 689
[83] Spiller E, Segmüller A 1974 Appl. Phys. Lett. 24 60
[84] 唐伟忠 1998 薄膜材料制备原理, 技术及应用 (冶金工业出版社), pp 1-323
[85] 郑伟涛 2004 薄膜材料与薄膜技术 (化学工业出版社), pp 1-962
[86] 刘小虹, 颜肖慈, 罗明道, 李伟 2002 自然杂志 24 36
[87] Phua L, Phuoc N, Ong C 2013 J. Alloys Compd. 553 146
[88] Khyzhun O Y, Solonin Y M, Dobrovolsky V 2001 J. Alloys Compd. 320 1
[89] Shahin A M, Grandjean F, Long G J, Schuman T P 2005 Chem. Mater. 17 315
[90] P23 bealine of PETRA-III. https://photon-science.desy.de/facilities/petra_iii/ beamlines/p23_in_situ_x_ray_diffraction_and_imaging/beamline_layout/index_eng.html. [2024-11-12]
[91] Chumakov A I, Shvyd’ko Y, Sergueev I, Bessas D, Rüffer R 2019 Phys. Rev. Lett. 123 097402
[92] Potapkin V, Chumakov A I, Smirnov G V, Celse J P, Rüffer R, McCammon C, Dubrovinsky L 2012 J. Synchrotron Radiat. 19 559
[93] Rüffer R, Chumakov A I 1996 Hyper. Int. 97 589
[94] Li W, Zhu J, Ma X, Li H, Wang H, Sawhney K J, Wang Z 2012 Rev. Sci. Instrum. 83 053114
[95] Hoszowska J, Dousse J C, Kern J, Rhême C 1996 Nucl. Instrum. Methods Phys. Res., Sect. A 376 129
[96] Kleymenov E, Bokhoven J A v, David C, Glatzel P, Janousch M, Alonso-Mori R, Studer M, Willimann M, Bergamaschi A, Henrich B, Nachtegaal M 2011 Rev. Sci. Instrum. 82 065107
[97] Jagodzinski P, Szlachetko J, Dousse J C, Hoszowska J, Szlachetko M, Vogelsang U, Banaś D, Pakendorf T, Meents A, van Bokhoven J A, Kubala-Kukuś A, Pajek M, Nachtegaal M 2019 Rev. Sci. Instrum. 90 063106
[98] Sawhney K J S, Dolbnya I P, Tiwari M K, Alianelli L, Scott S M, Preece G M, Pedersen U K, Walton R D 2010 AIP Conf. Proc. 1234 387
[99] Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven J A, Grunwaldt J 2010 AIP Conf. Proc. 1234 251
[100] Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Radiat. 22 175
[101] Parratt L G 1954 Phys. Rev. 95 359
[102] Röhlsberger R, Klein T, Schlage K, Leupold O, Rüffer R 2004 Phys. Rev. B 69 235412
[103] Tomaš M S 1995 Phys. Rev. A 51 2545
[104] Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675
[105] Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501
[106] Fano U 1961 Phys. Rev. 124 1866
[107] Fano U, Cooper J W 1965 Phys. Rev. 137 A1364
[108] Li T J, Huang X C, Ma Z R, Li B, Zhu L F 2022 Phys. Rev. Res. 4 023081
[109] Li T J, Huang X C, Ma Z R, Li B, Wang X Y, Zhu L F 2023 Phys. Rev. A 108 033715
[110] Dutra S M, Knight P L 1996 Phys. Rev. A 53 3587
[111] Bauer M 2014 Phys. Chem. Chem. Phys. 16 13827
[112] Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003
[113] Gel’mukhanov F, Ågren H 1999 Phys. Rep. 312 87
[114] Lohse L M, Andrejić P, Velten S, Vassholz M, Neuhaus C, Negi A, Panchwanee A, Sergeev I, Pálffy A, Salditt T, Röhlsberger R 2024 arXiv:2403.06508 [quant-ph]
[115] Chumakov A I, Baron A Q, Sergueev I, Strohm C, Leupold O, Shvyd¡¯ko Y, Smirnov G V, Rüffer R, Inubushi Y, Yabashi M, Tono K, Kudo T, Ishikawa T 2018 Nat. Phys. 14 261
[116] Fukuzawa H, Son S K, Motomura K, Mondal S, Nagaya K, Wada S, Liu X J, Feifel R, Tachibana T, Ito Y, Kimura M, Sakai T, Matsunami K, Hayashita H, Kajikawa J, Johnsson P, Siano M, Kukk E, Rudek B, Erk B, Foucar L, Robert E, Miron C, Tono K, Inubushi Y, Hatsui T, Yabashi M, Yao M, Santra R, Ueda K 2013 Phys. Rev. Lett. 110 173005
[117] LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R, Berrah N 2021 Phys. Rev. Lett. 127 213202
[118] Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T 2018 Phys. Rev. Lett. 121 083901
[119] Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M 2015 Nature 524 446
[120] Wu B, Wang T, Graves C E, Zhu D, Schlotter W, Turner J, Hellwig O, Chen Z, Dürr H, Scherz A, Stöhr J 2016 Phys. Rev. Lett. 117 027401
[121] Chen Z, Higley D J, Beye M, Hantschmann M, Mehta V, Hellwig O, Mitra A, Bonetti S, Bucher M, Carron S, Chase T, Jal E, Kukreja R, Liu T, Reid A H, Dakovski G L, Föhlisch A, Schlotter W F, Dürr H A, Stöhr J 2018 Phys. Rev. Lett. 121 137403
[122] Liu J, Li Y, Wang L, Zhao J, Yuan J, Kong X 2021 Phys. Rev. A 104 L031101
[123] Mercadier L, Benediktovitch A, Weninger C, Blessenohl M A, Bernitt S, Bekker H, Dobrodey S, Sanchez-Gonzalez A, Erk B, Bomme C, Boll R, Yin Z, Majety V P, Steinbrügge R, Khalal M A, Penent F, Palaudoux J, Lablanquie P, Rudenko A, Rolles D, Crespo López-Urrutia J R, Rohringer N 2019 Phys. Rev. Lett. 123 023201
[124] Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, EngJohnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström J M 2022 Nature 608 488
[125] Cui J J, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang S B 2023 Phys. Rev. Lett. 131 043201
[126] Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J, Follath R, Kavčič M, Knopp G, Rehanek J, Błachucki W, Delcey M G, Lundberg M, Tyrała K, Zhu D, Alonso-Mori R, Abela R, Sá J, Szlachetko J 2019 Nat. Commun. 10 4761
[127] Rohringer N 2019 Philos. Trans. R. Soc. A 377 20170471
[128] Matsuda I, Arafune R 2023 Nonlinear X-Ray Spectroscopy for Materials Science (Springer), pp 1-160
[129] Shwartz S, Harris S E 2011 Phys. Rev. Lett. 106 080501
[130] Shwartz S, Coffee R N, Feldkamp J M, Feng Y, Hastings J B, Yin G Y, Harris S E 2012 Phys. Rev. Lett. 109 013602
[131] Shwartz S, Fuchs M, Hastings J B, Inubushi Y, Ishikawa T, Katayama T, Reis D A, Sato T, Tono K, Yabashi M, Yudovich S, Harris S E 2014 Phys. Rev. Lett. 112 163901
[132] Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C 2015 Nature 520 205
[133] Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Haddad A A, Gessini A, Maznev A A, Cirelli C, Gerber S, Pedrini B, Mancini G F, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y, Mozzanica A, Johnson P J M, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, Lemke H T, Milne C J, David C, Torre R, Chergui M, Nelson K A, Masciovecchio C, Staub U, Patthey L, Svetina C 2021 Nat. Photonics 15 499
[134] Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus J L, Li C, Bajt Scv, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra K K, Möller J, Zozulya A, Shayduk R, Lu W, Brauße F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, anders M, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, Chapman H N 2023 Phys. Rev. Lett. 130 173201
[135] Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M 2019 J. Synchrotron Radiat. 26 2050
[136] Klein Y, Tripathi A K, Strizhevsky E, Capotondi F, De Angelis D, Giannessi L, Pancaldi M, Pedersoli E, Prince K C, Sefi O, Kim Y Y, Vartanyants I A, Shwartz S 2023 Phys. Rev. A 107 053503
计量
- 文章访问数: 72
- PDF下载量: 6
- 被引次数: 0