-
相干X光, 特别是X射线自由电子激光技术的发展提供了一种新的产生超强光场的途径. 由于其较高的光子能量、高峰值功率密度与超短的脉冲长度, 有望将强场激光物理从可见光波段推进到X光波段. 目前, 基于X射线的非线性原子分子物理已取得了初步进展, 随着X射线光强的提升, 相互作用将进入相对论物理、强场量子电动力学(quantum electrodynamics, QED)物理等领域, 为激光驱动加速与辐射、QED真空、暗物质的产生与探测等带来新的科学发现机会. 本文对强场X射线激光在固体中的尾场加速、真空极化、轴子的产生与探测等方面进行介绍, 旨在阐明X射线波段强场物理在若干基础前沿与关键应用方面的独特优势, 并对未来的发展方向进行展望.
Development of coherent X-ray source, especially X-ray free electron laser (XFEL), offers a new approach to reaching a strong X-ray field. High field laser physics will extend from optical to X-ray regime since the X-ray beam has high photon energy, high intensity and ultrashort pulse duration. Till now, nonlinear atomic physics and nonlinear molecular physics have been explored based on intense X-ray beam sources. They will extend to relativistic physics and quantum electrodynamics (QED) physics area with X-ray intensity increasing, and thus offering a new opportunity to innovatively investigate the particle acceleration and radiation, QED vacuum, dark matter generation and vacuum birefringence. This review provides an overview of the wake field acceleration, vacuum birefringence as well as axion generation and detection based on strong X-ray laser field. Intense X-ray pulse will show unique potential both in basic science and in practical applications. Finally, an outlook for the future development and perspectives of high-field X-ray physics is described. The invention of chirped pulse amplification results in the generation of the light intensity in the relativistic regime (> 1018 W/cm2). Laser-plasma interaction in this regime motivates multiple disciplines such as laser-driven particle acceleration, laser secondary radiation sources, strong-field physics, etc. While petawatt (PW) lasers have been established in various institutions, several projects of building 10 PW or even 100 PW lasers are proposed. However, pushing the laser power to the next level (EW) confronts significant challenges. Current technology is approaching to its limit in producing large aperture size optics due to the damage threshold of optical material. Alternatively, plasma is considered as a potential medium to amplify or compress laser pulses. This requires further validation in future studies. In recent years, XFEL has made significant progress of producing high brightness light sources. Based on self-amplified spontaneous emission (SASE) or self-seeding in undulators, the XFEL provides a brightest light source up to the hard X-ray wavelength. The existing major XFEL facilities are LCLS-II in USA, EuXFEL in Europe, SACLA in Japan, Swiss FEL in Switzerland and PAL-XFEL in South Korea. In China, a new facility SHINE consisting of a high-repetition rate hard X-ray FEL and ultra-intense optical laser is under construction. After implementing the tapered undulator in XFEL, the peak power of X-ray pulses now reaches multi-terawatt. The pulses can also be compressed to an attosecond level. Following this trend, it is expected that the coherent XFEL will be able to generate a super strong light field, thus pushing strong-field physics to the X-ray regime. The relativistic threshold for 1-nm X-ray is about 1024 W/cm2, which we believe will be achievable in the near future. Such relativistic X-ray pulses can be used to stimulate relativistic dynamics in solid materials, realizing high-gradient low-emittance particle acceleration in solids. This may open a new path towards high-energy physics, advanced light sources, fast imaging, etc. In addition, the combination of strong X-rays and ultra-intense lasers offers a new opportunity to study the light-by-light scattering in vacuum and detecting the candidate particles for dark matter. The field of strong-field X-ray physics is largely unexplored realm. In this review, we show a few key science cases brought up by high power X-rays and shed light on this important direction. The ultra-intense coherent X-ray laser with a wavelength in a range from 100 nm to less than 0.1nm can interact directly with the nanostructured materials with solid density. Benefiting from the ultra-intense field and ultra-high critical density, acceleration field with gradient of TeV/cm can be stimulated on a nanometer scale, and thus ultra-high energy particle beams can be obtained. The available nanometer material technique promotes such a development. For example, the recent research reported that high-repetition/few-attosecond high-quality electron beams can be generated from crystal driven by an intense X-ray laser. Beside electrons, ions including protons are expected to be accelerated to ultra-high energy via target normal sheath or light pressure acceleration mechanisms on a nanometer scale if the X-ray is intense enough. It should be noted that ultra-high acceleration gradient is not the unique advantage of the X-ray laser driven acceleration. A more important quality is the beam emittance that can be low enough because of the small size of the beam source. This is very significant for ultrafast microscopy to achieve a high resolution. In classical physics, photon-photon interaction is prohibited in vacuum. However, according to the QED theory, vacuum is full of quantum fluctuation, in which virtual particle-antiparticle pairs emerge and annihilate in ultra-short instants. When excited by strong fields, the vacuum fluctuation appears as a weak nonlinear medium and allows photon-photon interaction therein, which is referred to as vacuum polarization. Based on the effective field theory, the vacuum polarization can be described by Euler-Heisenberg Lagrangian density, and then classical Maxwell equations are modified. Vacuum polarization can induce some novel physical effects, including vacuum birefringence, light-by-light scattering, vacuum diffraction, etc. Up to now, none of these effects has been verified experimentally under strong fields. The XFEL is regarded as a promising probe to explore these vacuum polarization effects. In this paper, the research progress of vacuum polarization driven by strong fields is summarized, the potential detection proposal using XFEL is discussed. Dark matter is one of the puzzles in contemporary physics. Till now, we still have not known what particles constitute it. Axion is a spinless massive hypothetical boson that is proposed as the solution to strong CP problem. It is the particle beyond the standard model and has extremely weak interaction with the standard-model particle like photon, and hence there appears a significant obstacle to detecting it. Therefore, axion and axion-like-particles (ALPs) are a kind of promising candidate of dark matter. In this paper, we summarize the research progress of axions and ALP detection, including detecting the axions sources from universe, the production and detection of artificial axions and ALPs. It is shown that the XFEL is a potential tool for detecting the artificial axions and ALPs under strong electromagnetic fields. The XFEL provides a coherent ultrafast X-ray beam for exploring particle acceleration and radiation, QED vacuum, dark matter generation, vacuum birefringence, etc. The probing of these dynamics requires different X-ray diagnoses, including the measurement of polarization purity, spectrum, pulse duration and focal condition. The X-ray polarization purity has been improved to a 10-10 level by using 6 reflections based on channel-cut silicon crystal and it will efficiently probe the vacuum birefringence. The pulse duration of isolated X-ray pulse in FEL reaches as short as 200 as, which allows probing ultrafast electron dynamics. A new self-seeding scheme using the Bragg reflection in SACLA is developed to obtain a narrow spectrum of 3 eV, 10 times smaller than that in the current SASE scheme. Therefore, the fast development of X-ray diagnostics will finely characterize X-ray beam itself and offer a unique tool for understanding the underlying phenomena for different applications. The peak intensity of coherent X-ray beam will reach to a relativistic level in future. A possible way is CPA technology, which is well developed in intense near-infrared laser system and may produce an ultrahigh intense attosecond X-ray pulse. High field X-ray laser physics will offer new opportunities both for basic science and for revolutionary application. -
Keywords:
- X-ray laser and diagnostics /
- high field laser physics /
- particle acceleration and radiation /
- quantum electrodynamics physics /
- dark matter detection
[1] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[2] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
Google Scholar
[3] Phuoc K T, Corde S, Thaury C, et al. 2012 Nat. Photonics 6 308
Google Scholar
[4] Rousse A, Phuoc K T, Shah R, et al. 2004 Phys.Rev. Lett. 93 135005
Google Scholar
[5] DI Piazza A, Mueller C, Hatsagortsyan K Z, et al. 2012 Rev. Mod. Phys. 84 1177
Google Scholar
[6] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[7] Wu H C, Sheng Z M, Zhang J 2005 Appl. Phys. Lett. 87 201502
Google Scholar
[8] Bulanov S V, Esirkepov T, Tajima T 2003 Phys. Rev. Lett. 91 085001
Google Scholar
[9] Ji L L, Shen B F, Li D X, et al. 2010 Phys. Rev. Lett. 105 025001
Google Scholar
[10] Madey J M J 1971 J. Appl. Phys. 42 1906
Google Scholar
[11] Emma P, Akpe R, Arthur J, et al. 2010 Nat. Photonics 4 641
Google Scholar
[12] Suckewer S, Skinner C H, Milchberg H, et al. 1985 Phys. Rev. Lett. 55 1753
Google Scholar
[13] Matthews D L, Hagelstein P L, Rosen M D, et al. 1985 Phys. Rev. Lett. 54 110
Google Scholar
[14] Saldin E L, Sandner W, Sanok Z, et al. 2000 Phys. Rev. Lett. 85 3825
Google Scholar
[15] Kim K J 1986 Phys. Rev. Lett. 57 1871
Google Scholar
[16] Amann J, Berg W, Blank V, et al. 2012 Nat. Photonics 6 693
Google Scholar
[17] Yu L H, Babzien M, Ben-Zvi I, et al. 2000 Science 289 932
Google Scholar
[18] Feng C, Deng H X 2018 Nucl. Sci. Tech. 29 160
Google Scholar
[19] Orzechowski T J, Anderson B R, Clark J C, et al. 1986 Phys. Rev. Lett. 57 2172
Google Scholar
[20] Emma C, Pellegrini C, Fang K, et al. 2016 Phys. Rev. Accel. Beams 19 020705
Google Scholar
[21] Lutman A A, Guetg M W, Maxwell T J, et al. 2018 Phys. Rev. Lett. 120 264801
Google Scholar
[22] Duris J, Li S, Driver T, et al. 2020 Nat. Photonics 14 30
Google Scholar
[23] Mourou G, Mironov S, Khazanov E, et al. 2014 Eur. Phys. J.-Spec. Top. 223 1181
Google Scholar
[24] Naumova N M, Nees J A, Sokolov I V, et al. 2004 Phys. Rev. Lett. 92 063902
Google Scholar
[25] Lichters R, Meyertervehn J, Pukhov A 1996 Phys. Plasmas 3 3425
Google Scholar
[26] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
Google Scholar
[27] Dromey B, Zepf M, Gopal A, et al. 2006 Nat. Phys. 2 456
Google Scholar
[28] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801
Google Scholar
[29] Blumenfeld I, Clayton C E, Decker F J, et al. 2007 Nature 445 741
Google Scholar
[30] Tajima T 2014 Eur. Phys. J.-Spec. Top. 223 1037
Google Scholar
[31] Zhang X M, Tajima T, Farinella D, et al. 2016 Phys. Rev. Accel. Beams 19 101004
Google Scholar
[32] Liang Z F, Shen B F, Zhang X M, et al. 2020 Matter Radiat at Extremes 5 054401
Google Scholar
[33] Lamb W E, Retherford R C 1947 Phys. Rev. 72 241
Google Scholar
[34] Nafe J E, Nelson E B, Rabi I I 1947 Phys. Rev. 71 914
Google Scholar
[35] Heisenberg W, Euler H 1936 Zeitschrift für Physik 98 714
Google Scholar
[36] Schwinger J 1951 Phys. Rev. 82 664
Google Scholar
[37] Shen B, Bu Z, Xu J, et al. 2018 Plasma Phys. Controlled Fusion 60 044002
Google Scholar
[38] Dinu V, Heinzl T, Ilderton A, et al. 2014 Phys. Rev. D 89 125003
Google Scholar
[39] Dinu V, Heinzl T, Ilderton A, et al. 2014 Phys. Rev. D 90 045025
Google Scholar
[40] Schlenvoigt H P, Heinzl T, Schramm U, et al. 2016 Phys. Scr. 91 023010
Google Scholar
[41] Heinzl T, Liesfeld B, Amthor K U, et al. 2006 Opt. Commun. 267 318
Google Scholar
[42] Karbstein F 2018 Phys. Rev. D 98 056010
Google Scholar
[43] Karbstein F, Sundqvist C 2016 Phys. Rev. D 94 013004
Google Scholar
[44] King B, Elkina N 2016 Phys. Rev. A 94 062102
Google Scholar
[45] Marx B, Schulze K S, Uschmann I, et al. 2013 Phys. Rev. Lett. 110 254801
Google Scholar
[46] Xu D, Shen B, Xu J, et al. 2020 Nucl Instrum.Methods A 982 164553
Google Scholar
[47] Shen B F, Yu M Y, Wang X 2003 Phys. Plasmas 10 4570
Google Scholar
[48] Lundin J, Marklund M, Lundström E, et al. 2006 Phys. Rev. A 74 043821
Google Scholar
[49] Lundström E, Brodin G, Lundin J, et al. 2006 Phys. Rev. Lett. 96 083602
Google Scholar
[50] King B, Keitel C H 2012 New J. Phys. 14 103002
Google Scholar
[51] King B, Heinzl T 2016 High Power Laser Sci. Eng. 4 010000e5
Google Scholar
[52] Boehl P, King B, Ruhl H 2016 J. Plasma Phys. 82 655820202
Google Scholar
[53] Gies H, Karbstein F, Kohlfürst C, et al. 2018 Phys. Rev. D 97 076002
Google Scholar
[54] King B, Hu H, Shen B 2018 Phys. Rev. A 98 023817
Google Scholar
[55] Gies H, Karbstein F, Kohlfürst C 2018 Phys. Rev. D 97 036022
Google Scholar
[56] Karbstein F, Shaisultanov R 2015 Phys. Rev. D 91 113002
Google Scholar
[57] Huang S, Jin B, Shen B 2019 Phys. Rev. D 100 013004
Google Scholar
[58] Briscese F 2017 Phys. Rev. A 96 053801
Google Scholar
[59] Rätzel D, Wilkens M, Menzel R 2017 Phys. Rev. A 95 012101
Google Scholar
[60] Aboushelbaya R, Glize K, Savin A F, et al. 2019 Phys. Rev. Lett. 123 113604
Google Scholar
[61] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2006 Phys. Rev. Lett. 97 083603
Google Scholar
[62] King B, Di Piazza A, Keitel C H 2010 Nat. Photonics 4 92
Google Scholar
[63] King B, Di Piazza A, Keitel C H 2010 Phys. Rev. A 82 032114
Google Scholar
[64] Tommasini D, Michinel H 2010 Phys. Rev. A 82 011803
Google Scholar
[65] Kryuchkyan G Y, Hatsagortsyan K Z 2011 Phys. Rev. Lett. 107 053604
Google Scholar
[66] Fedotov A M, Narozhny N B 2007 Phys. Lett. A 362 1
Google Scholar
[67] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. A 78 062109
Google Scholar
[68] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. Lett. 100 010403
Google Scholar
[69] Gies H, Karbstein F, Shaisultanov R 2014 Phys. Rev. D 90 033007
Google Scholar
[70] Di Piazza A, Milstein A I, Keitel C H 2007 Phys. Rev. A 76 032103
Google Scholar
[71] Gies H, Karbstein F, Seegert N 2016 Phys. Rev. D 93 085034
Google Scholar
[72] Mendonca J T, Marklund M, Shukla R K 2006 Phys. Lett. A 359 700
Google Scholar
[73] Brunthaler A, Reid M J, Falcke H, et al. 2005 Science 307 1440
Google Scholar
[74] Rubin V C, Ford W K, Thonnard N 1980 Astrophys. J. 238 471
Google Scholar
[75] Walsh D, Carswell R F, Weymann R J 1979 Nature 279 381
Google Scholar
[76] Clowe D, Bradac M, Gonzalez A H, et al. 2006 Astrophys. J. 648 L109
Google Scholar
[77] Hinshaw G, Weiland J L, Hill R S, et al. 2009 Astrophys. J. Suppl. Ser. 180 225
Google Scholar
[78] Boggess N W, Mather J C, Weiss R, et al. 1992 Astrophys. J. 397 420
Google Scholar
[79] Adam R, Ade P A R, Aghanim N, et al. 2016 Astron. Astrophys. 594 A1
Google Scholar
[80] Sikivie P 2010 Int. J. Mod. Phys. A 25 554
Google Scholar
[81] Duffy L D, Van Bibber K 2009 New J. Phys. 11 105008
Google Scholar
[82] Abbott L F, Sikivie P A 1983 Phys. Lett. B 120 133
Google Scholar
[83] Covi L, Kim J E, Roszkowski L 1999 Phys. Rev. Lett. 82 4180
Google Scholar
[84] Wilczel F 1978 Phys. Rev. Lett. 40 279
Google Scholar
[85] Weinberg S 1978 Phys. Rev. Lett. 40 223
Google Scholar
[86] Peccei R D, Quinn H R 1977 Phys. Rev. Lett. 38 1440
Google Scholar
[87] Bardeen W A, Peccei R D, Yanagida T 1987 Nucl. Phys. B 279 401
Google Scholar
[88] Asano Y, Kikutani F, Kurokawa S, et al. 1981 Phys. Lett. B 107 159
Google Scholar
[89] Sikivie P 1983 Phys. Rev. Lett. 51 1415
Google Scholar
[90] Shifman M A, Vainshtein A I, Zakharov V I 1980 Nucl. Phys. B 166 493
[91] Kim J E 1979 Phys. Rev. Lett. 43 103
Google Scholar
[92] Arik E, Aune S, Autiero D, et al. 2009 J.Cosmol. Astropart. Phys. 2 008
Google Scholar
[93] Andriamonje S, Aune S, Autiero D 2007 J. Cosmol. Astropart Phys. 4 010
Google Scholar
[94] Anastassoppulos V, Aune S, Barth K, et al. 2017 Nat. Phys. 13 584
Google Scholar
[95] Collaboration C, Zioutas K, Andriamonje S, et al. 2005 Phys. Rev. Lett. 94 121301
Google Scholar
[96] Della Valle F, Gastaldi U, et al. 2013 New J. Phys. 15 053026
Google Scholar
[97] Della Valle F, Ejlli A, Gastaldi U, et al. 2016 Eur. Phys. J. C 76 24
Google Scholar
[98] Della Valle F, Milotti E, Ejlli A, et al. 2014 Phys. Rev. D 90 092003
Google Scholar
[99] Ahlers M, Gies H, Jaeckel J, et al. 2007 Phys. Rev. D 75 035011
Google Scholar
[100] Collaboration P, Zavattini E, Zavattini G, et al. 2006 Phys. Rev. Lett. 96 110406
Google Scholar
[101] Villalba-Chavez S, Podszus T, Mueller C 2017 Phys. Lett. B 769 233
Google Scholar
[102] Villalba-Chavez S, Di Piazza A 2013 J. High Energy Phys. 2013 136
Google Scholar
[103] Villalba-Chavez S 2014 Nucl. Phys. B 881 391
Google Scholar
[104] Tommasini D, Ferrando A, Michinel H, et al. 2009 J. High Energy Phys. 11 043
Google Scholar
[105] Wilczek F 1987 Phys. Rev. Lett. 58 1799
Google Scholar
[106] Sulc M, Pugnat P, Ballou R, et al. 2013 Nucl. Instrum.Methods A 718 530
Google Scholar
[107] Collaboration O, Pugnat P, Duvillaret L, et al. 2008 Phys. Rev. D 78 092003
Google Scholar
[108] Ehret K, Frede M, Ghazaryan S, et al. 2010 Phys. Lett. B 689 149
Google Scholar
[109] Ehret K, Frede M, Ghazaryan S, et al. 2009 Nucl. Instrum.Methods A 612 83
Google Scholar
[110] Huang S, Shen S, Bu Z, et al. 2020 arXiv: 2005.02910 v2.
[111] https://shine.shanghaitech.edu.cn/main.htm [2021-1-1]
[112] Decking W, Abeghyan S, Abramian P, et al. 2020 Nat. Photonics 14 391
Google Scholar
[113] Heeg K P, Wille H C, Schlage K, et al. 2013 Phys. Rev. Lett. 111 073601
Google Scholar
[114] Toellner T S, Alp E E, Sturhahn W, et al. 1995 Appl. Phys. Lett. 67 1993
Google Scholar
[115] Marx B, Ushmann I, Hofer S, et al. 2011 Opt. Commun. 284 915
Google Scholar
[116] Bernhardt H, Marx-Glowna B, Schulze K S, et al. 2016 Appl. Phys. Lett. 109 121106
Google Scholar
[117] Schulze K S 2018 APL Photonics 3 126106
Google Scholar
[118] Bernhardt H, Schmitt A T, Grabiger B, et al. 2020 Phys. Rev. Research 2 023365
Google Scholar
[119] Fruehling U, Wieland M, Gensch M, et al. 2009 Nat. Photonics 3 523
Google Scholar
[120] Hentschel M, Kienberger R, Spielmann C, et al. 2001 Nature 414 509
Google Scholar
[121] Drescher M, Hentschel M, Kieberger R, et al. 2001 Science 291 1923
Google Scholar
[122] Grguras I, Maier A R, Behrens C, et al. 2012 Nat. Photonics 6 852
Google Scholar
[123] Hartmann N, Helml W, Galler A, et al. 2014 Nat. Photonics 8 706
Google Scholar
[124] Helml W, Maier A R, Schweinberger W, et al. 2014 Nat. Photonics 8 950
Google Scholar
[125] Kazansky A K, Bozhevolnov A V, Sazhina I P, et al. 2016 Phys. Rev. A 93 013407
Google Scholar
[126] Hartmann N, Hartmann G, Heider R, et al. 2018 Nat. Photonics 12 215
Google Scholar
[127] David C, Gorelick S, Rutishauser S, et al. 2011 Sci. Rep. 1 57
Google Scholar
[128] Yumoto H, Mimura H, Koyama T, et al. 2013 Nat. Photonics 7 43
Google Scholar
[129] Mimura H, Yumoto H, Matsuyama S, et al. 2014 Nat. Commun. 5 3539
Google Scholar
[130] Schropp A, Hoppe R, Meier V, et al. 2013 Sci. Rep. 3 1633
Google Scholar
[131] Liu Y, Seaberg M, Zhu D, et al. 2018 Optica 5 967
Google Scholar
[132] Liu Y, Seaberg M, Feng Y, et al. 2020 J. Synchrotron Radiat. 27 254
Google Scholar
[133] Pikuz T, Faenov A, Matsuoka T, et al. 2015 Sci. Rep. 5 17713
Google Scholar
[134] Yabashi M, Hastings J B, Zolotorev M S, et al. 2006 Phys. Rev. Lett. 97 084802
Google Scholar
[135] Zhu D, Cammarata M, Feldkamp J M, et al. 2012 Appl. Phys. Lett. 101 034103
Google Scholar
[136] Karvinen P, Rutishauser S, Mozzanica A, et al. 2012 Opt. Lett. 37 5073
Google Scholar
[137] Makita M, Karvinen P, Zhu D, et al. 2015 Optica 2 912
Google Scholar
[138] Inoue I, Osaka T, Hara T, et al. 2019 Nat. Photonics 13 319
Google Scholar
[139] Matsumura S, Osaka T, Inoue I, et al. 2020 Opt. Express 28 25706
Google Scholar
[140] Rohringer N, Ryan D, London R A, et al. 2012 Nature 481 488
Google Scholar
[141] Young L, Kanter E P, Kraessig B, et al. 2010 Nature 466 56
Google Scholar
[142] Weninger C, Purvis M, Ryan D, et al. 2013 Phys. Rev. Lett. 111 233902
Google Scholar
[143] Stöhr J, Scherz A 2015 Phys. Rev. Lett. 115 107402
Google Scholar
-
图 2 超强激光产生相干X射线脉冲的原理. 利用薄膜将数十飞秒的可见光波段激光压缩至数飞秒(单周期)[23], 压缩后与固体等离子体表面相互作用. 通过“相对论振荡镜”机制产生单个相干的阿秒X射线脉冲辐射[24]
Fig. 2. Coherent X-ray beam generation based on relativistic laser pulse: A foil works as a compressor to single cycle from optical laser pulse with pulse duration of several tens femtoseconds[23]. When the compressed laser pulse reaches a solid target surface, single X-ray attosecond pulse is produced based on relativistic oscillating mirror scheme[24].
图 7 强激光与XFEL的真空四波混频示意图[57], 二者分别沿着逆x轴和顺x轴方向传播, 对撞时发生相互作用, 并以θ角度散射出信号光, 总的散射光是所有散射光子的相干叠加, 并形成一个散射环
Fig. 7. Schematic design for four-wave mixing using strong laser and XFEL probe, laser and XFEL are travelling backwards and forwards along the x-axis, and polarized in z and y direction, respectively. The scattered photons are emitted in the oblique angle of θ. The composition of all the scattered photons forms a scattering ring.
图 8 真空双缝衍射条纹[62], 黑色“叉”标记的是普通双缝衍射极小值的位置, 与真空极化衍射的极小值相符
Fig. 8. Vacuum bright and dark diffraction fringes resembling the characteristic double-slit pattern, the crosses indicate the prediction of the classic formula for minima, which is consistent with the vacuum diffraction.
-
[1] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[2] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267
Google Scholar
[3] Phuoc K T, Corde S, Thaury C, et al. 2012 Nat. Photonics 6 308
Google Scholar
[4] Rousse A, Phuoc K T, Shah R, et al. 2004 Phys.Rev. Lett. 93 135005
Google Scholar
[5] DI Piazza A, Mueller C, Hatsagortsyan K Z, et al. 2012 Rev. Mod. Phys. 84 1177
Google Scholar
[6] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
Google Scholar
[7] Wu H C, Sheng Z M, Zhang J 2005 Appl. Phys. Lett. 87 201502
Google Scholar
[8] Bulanov S V, Esirkepov T, Tajima T 2003 Phys. Rev. Lett. 91 085001
Google Scholar
[9] Ji L L, Shen B F, Li D X, et al. 2010 Phys. Rev. Lett. 105 025001
Google Scholar
[10] Madey J M J 1971 J. Appl. Phys. 42 1906
Google Scholar
[11] Emma P, Akpe R, Arthur J, et al. 2010 Nat. Photonics 4 641
Google Scholar
[12] Suckewer S, Skinner C H, Milchberg H, et al. 1985 Phys. Rev. Lett. 55 1753
Google Scholar
[13] Matthews D L, Hagelstein P L, Rosen M D, et al. 1985 Phys. Rev. Lett. 54 110
Google Scholar
[14] Saldin E L, Sandner W, Sanok Z, et al. 2000 Phys. Rev. Lett. 85 3825
Google Scholar
[15] Kim K J 1986 Phys. Rev. Lett. 57 1871
Google Scholar
[16] Amann J, Berg W, Blank V, et al. 2012 Nat. Photonics 6 693
Google Scholar
[17] Yu L H, Babzien M, Ben-Zvi I, et al. 2000 Science 289 932
Google Scholar
[18] Feng C, Deng H X 2018 Nucl. Sci. Tech. 29 160
Google Scholar
[19] Orzechowski T J, Anderson B R, Clark J C, et al. 1986 Phys. Rev. Lett. 57 2172
Google Scholar
[20] Emma C, Pellegrini C, Fang K, et al. 2016 Phys. Rev. Accel. Beams 19 020705
Google Scholar
[21] Lutman A A, Guetg M W, Maxwell T J, et al. 2018 Phys. Rev. Lett. 120 264801
Google Scholar
[22] Duris J, Li S, Driver T, et al. 2020 Nat. Photonics 14 30
Google Scholar
[23] Mourou G, Mironov S, Khazanov E, et al. 2014 Eur. Phys. J.-Spec. Top. 223 1181
Google Scholar
[24] Naumova N M, Nees J A, Sokolov I V, et al. 2004 Phys. Rev. Lett. 92 063902
Google Scholar
[25] Lichters R, Meyertervehn J, Pukhov A 1996 Phys. Plasmas 3 3425
Google Scholar
[26] Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745
Google Scholar
[27] Dromey B, Zepf M, Gopal A, et al. 2006 Nat. Phys. 2 456
Google Scholar
[28] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801
Google Scholar
[29] Blumenfeld I, Clayton C E, Decker F J, et al. 2007 Nature 445 741
Google Scholar
[30] Tajima T 2014 Eur. Phys. J.-Spec. Top. 223 1037
Google Scholar
[31] Zhang X M, Tajima T, Farinella D, et al. 2016 Phys. Rev. Accel. Beams 19 101004
Google Scholar
[32] Liang Z F, Shen B F, Zhang X M, et al. 2020 Matter Radiat at Extremes 5 054401
Google Scholar
[33] Lamb W E, Retherford R C 1947 Phys. Rev. 72 241
Google Scholar
[34] Nafe J E, Nelson E B, Rabi I I 1947 Phys. Rev. 71 914
Google Scholar
[35] Heisenberg W, Euler H 1936 Zeitschrift für Physik 98 714
Google Scholar
[36] Schwinger J 1951 Phys. Rev. 82 664
Google Scholar
[37] Shen B, Bu Z, Xu J, et al. 2018 Plasma Phys. Controlled Fusion 60 044002
Google Scholar
[38] Dinu V, Heinzl T, Ilderton A, et al. 2014 Phys. Rev. D 89 125003
Google Scholar
[39] Dinu V, Heinzl T, Ilderton A, et al. 2014 Phys. Rev. D 90 045025
Google Scholar
[40] Schlenvoigt H P, Heinzl T, Schramm U, et al. 2016 Phys. Scr. 91 023010
Google Scholar
[41] Heinzl T, Liesfeld B, Amthor K U, et al. 2006 Opt. Commun. 267 318
Google Scholar
[42] Karbstein F 2018 Phys. Rev. D 98 056010
Google Scholar
[43] Karbstein F, Sundqvist C 2016 Phys. Rev. D 94 013004
Google Scholar
[44] King B, Elkina N 2016 Phys. Rev. A 94 062102
Google Scholar
[45] Marx B, Schulze K S, Uschmann I, et al. 2013 Phys. Rev. Lett. 110 254801
Google Scholar
[46] Xu D, Shen B, Xu J, et al. 2020 Nucl Instrum.Methods A 982 164553
Google Scholar
[47] Shen B F, Yu M Y, Wang X 2003 Phys. Plasmas 10 4570
Google Scholar
[48] Lundin J, Marklund M, Lundström E, et al. 2006 Phys. Rev. A 74 043821
Google Scholar
[49] Lundström E, Brodin G, Lundin J, et al. 2006 Phys. Rev. Lett. 96 083602
Google Scholar
[50] King B, Keitel C H 2012 New J. Phys. 14 103002
Google Scholar
[51] King B, Heinzl T 2016 High Power Laser Sci. Eng. 4 010000e5
Google Scholar
[52] Boehl P, King B, Ruhl H 2016 J. Plasma Phys. 82 655820202
Google Scholar
[53] Gies H, Karbstein F, Kohlfürst C, et al. 2018 Phys. Rev. D 97 076002
Google Scholar
[54] King B, Hu H, Shen B 2018 Phys. Rev. A 98 023817
Google Scholar
[55] Gies H, Karbstein F, Kohlfürst C 2018 Phys. Rev. D 97 036022
Google Scholar
[56] Karbstein F, Shaisultanov R 2015 Phys. Rev. D 91 113002
Google Scholar
[57] Huang S, Jin B, Shen B 2019 Phys. Rev. D 100 013004
Google Scholar
[58] Briscese F 2017 Phys. Rev. A 96 053801
Google Scholar
[59] Rätzel D, Wilkens M, Menzel R 2017 Phys. Rev. A 95 012101
Google Scholar
[60] Aboushelbaya R, Glize K, Savin A F, et al. 2019 Phys. Rev. Lett. 123 113604
Google Scholar
[61] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2006 Phys. Rev. Lett. 97 083603
Google Scholar
[62] King B, Di Piazza A, Keitel C H 2010 Nat. Photonics 4 92
Google Scholar
[63] King B, Di Piazza A, Keitel C H 2010 Phys. Rev. A 82 032114
Google Scholar
[64] Tommasini D, Michinel H 2010 Phys. Rev. A 82 011803
Google Scholar
[65] Kryuchkyan G Y, Hatsagortsyan K Z 2011 Phys. Rev. Lett. 107 053604
Google Scholar
[66] Fedotov A M, Narozhny N B 2007 Phys. Lett. A 362 1
Google Scholar
[67] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. A 78 062109
Google Scholar
[68] Di Piazza A, Hatsagortsyan K Z, Keitel C H 2008 Phys. Rev. Lett. 100 010403
Google Scholar
[69] Gies H, Karbstein F, Shaisultanov R 2014 Phys. Rev. D 90 033007
Google Scholar
[70] Di Piazza A, Milstein A I, Keitel C H 2007 Phys. Rev. A 76 032103
Google Scholar
[71] Gies H, Karbstein F, Seegert N 2016 Phys. Rev. D 93 085034
Google Scholar
[72] Mendonca J T, Marklund M, Shukla R K 2006 Phys. Lett. A 359 700
Google Scholar
[73] Brunthaler A, Reid M J, Falcke H, et al. 2005 Science 307 1440
Google Scholar
[74] Rubin V C, Ford W K, Thonnard N 1980 Astrophys. J. 238 471
Google Scholar
[75] Walsh D, Carswell R F, Weymann R J 1979 Nature 279 381
Google Scholar
[76] Clowe D, Bradac M, Gonzalez A H, et al. 2006 Astrophys. J. 648 L109
Google Scholar
[77] Hinshaw G, Weiland J L, Hill R S, et al. 2009 Astrophys. J. Suppl. Ser. 180 225
Google Scholar
[78] Boggess N W, Mather J C, Weiss R, et al. 1992 Astrophys. J. 397 420
Google Scholar
[79] Adam R, Ade P A R, Aghanim N, et al. 2016 Astron. Astrophys. 594 A1
Google Scholar
[80] Sikivie P 2010 Int. J. Mod. Phys. A 25 554
Google Scholar
[81] Duffy L D, Van Bibber K 2009 New J. Phys. 11 105008
Google Scholar
[82] Abbott L F, Sikivie P A 1983 Phys. Lett. B 120 133
Google Scholar
[83] Covi L, Kim J E, Roszkowski L 1999 Phys. Rev. Lett. 82 4180
Google Scholar
[84] Wilczel F 1978 Phys. Rev. Lett. 40 279
Google Scholar
[85] Weinberg S 1978 Phys. Rev. Lett. 40 223
Google Scholar
[86] Peccei R D, Quinn H R 1977 Phys. Rev. Lett. 38 1440
Google Scholar
[87] Bardeen W A, Peccei R D, Yanagida T 1987 Nucl. Phys. B 279 401
Google Scholar
[88] Asano Y, Kikutani F, Kurokawa S, et al. 1981 Phys. Lett. B 107 159
Google Scholar
[89] Sikivie P 1983 Phys. Rev. Lett. 51 1415
Google Scholar
[90] Shifman M A, Vainshtein A I, Zakharov V I 1980 Nucl. Phys. B 166 493
[91] Kim J E 1979 Phys. Rev. Lett. 43 103
Google Scholar
[92] Arik E, Aune S, Autiero D, et al. 2009 J.Cosmol. Astropart. Phys. 2 008
Google Scholar
[93] Andriamonje S, Aune S, Autiero D 2007 J. Cosmol. Astropart Phys. 4 010
Google Scholar
[94] Anastassoppulos V, Aune S, Barth K, et al. 2017 Nat. Phys. 13 584
Google Scholar
[95] Collaboration C, Zioutas K, Andriamonje S, et al. 2005 Phys. Rev. Lett. 94 121301
Google Scholar
[96] Della Valle F, Gastaldi U, et al. 2013 New J. Phys. 15 053026
Google Scholar
[97] Della Valle F, Ejlli A, Gastaldi U, et al. 2016 Eur. Phys. J. C 76 24
Google Scholar
[98] Della Valle F, Milotti E, Ejlli A, et al. 2014 Phys. Rev. D 90 092003
Google Scholar
[99] Ahlers M, Gies H, Jaeckel J, et al. 2007 Phys. Rev. D 75 035011
Google Scholar
[100] Collaboration P, Zavattini E, Zavattini G, et al. 2006 Phys. Rev. Lett. 96 110406
Google Scholar
[101] Villalba-Chavez S, Podszus T, Mueller C 2017 Phys. Lett. B 769 233
Google Scholar
[102] Villalba-Chavez S, Di Piazza A 2013 J. High Energy Phys. 2013 136
Google Scholar
[103] Villalba-Chavez S 2014 Nucl. Phys. B 881 391
Google Scholar
[104] Tommasini D, Ferrando A, Michinel H, et al. 2009 J. High Energy Phys. 11 043
Google Scholar
[105] Wilczek F 1987 Phys. Rev. Lett. 58 1799
Google Scholar
[106] Sulc M, Pugnat P, Ballou R, et al. 2013 Nucl. Instrum.Methods A 718 530
Google Scholar
[107] Collaboration O, Pugnat P, Duvillaret L, et al. 2008 Phys. Rev. D 78 092003
Google Scholar
[108] Ehret K, Frede M, Ghazaryan S, et al. 2010 Phys. Lett. B 689 149
Google Scholar
[109] Ehret K, Frede M, Ghazaryan S, et al. 2009 Nucl. Instrum.Methods A 612 83
Google Scholar
[110] Huang S, Shen S, Bu Z, et al. 2020 arXiv: 2005.02910 v2.
[111] https://shine.shanghaitech.edu.cn/main.htm [2021-1-1]
[112] Decking W, Abeghyan S, Abramian P, et al. 2020 Nat. Photonics 14 391
Google Scholar
[113] Heeg K P, Wille H C, Schlage K, et al. 2013 Phys. Rev. Lett. 111 073601
Google Scholar
[114] Toellner T S, Alp E E, Sturhahn W, et al. 1995 Appl. Phys. Lett. 67 1993
Google Scholar
[115] Marx B, Ushmann I, Hofer S, et al. 2011 Opt. Commun. 284 915
Google Scholar
[116] Bernhardt H, Marx-Glowna B, Schulze K S, et al. 2016 Appl. Phys. Lett. 109 121106
Google Scholar
[117] Schulze K S 2018 APL Photonics 3 126106
Google Scholar
[118] Bernhardt H, Schmitt A T, Grabiger B, et al. 2020 Phys. Rev. Research 2 023365
Google Scholar
[119] Fruehling U, Wieland M, Gensch M, et al. 2009 Nat. Photonics 3 523
Google Scholar
[120] Hentschel M, Kienberger R, Spielmann C, et al. 2001 Nature 414 509
Google Scholar
[121] Drescher M, Hentschel M, Kieberger R, et al. 2001 Science 291 1923
Google Scholar
[122] Grguras I, Maier A R, Behrens C, et al. 2012 Nat. Photonics 6 852
Google Scholar
[123] Hartmann N, Helml W, Galler A, et al. 2014 Nat. Photonics 8 706
Google Scholar
[124] Helml W, Maier A R, Schweinberger W, et al. 2014 Nat. Photonics 8 950
Google Scholar
[125] Kazansky A K, Bozhevolnov A V, Sazhina I P, et al. 2016 Phys. Rev. A 93 013407
Google Scholar
[126] Hartmann N, Hartmann G, Heider R, et al. 2018 Nat. Photonics 12 215
Google Scholar
[127] David C, Gorelick S, Rutishauser S, et al. 2011 Sci. Rep. 1 57
Google Scholar
[128] Yumoto H, Mimura H, Koyama T, et al. 2013 Nat. Photonics 7 43
Google Scholar
[129] Mimura H, Yumoto H, Matsuyama S, et al. 2014 Nat. Commun. 5 3539
Google Scholar
[130] Schropp A, Hoppe R, Meier V, et al. 2013 Sci. Rep. 3 1633
Google Scholar
[131] Liu Y, Seaberg M, Zhu D, et al. 2018 Optica 5 967
Google Scholar
[132] Liu Y, Seaberg M, Feng Y, et al. 2020 J. Synchrotron Radiat. 27 254
Google Scholar
[133] Pikuz T, Faenov A, Matsuoka T, et al. 2015 Sci. Rep. 5 17713
Google Scholar
[134] Yabashi M, Hastings J B, Zolotorev M S, et al. 2006 Phys. Rev. Lett. 97 084802
Google Scholar
[135] Zhu D, Cammarata M, Feldkamp J M, et al. 2012 Appl. Phys. Lett. 101 034103
Google Scholar
[136] Karvinen P, Rutishauser S, Mozzanica A, et al. 2012 Opt. Lett. 37 5073
Google Scholar
[137] Makita M, Karvinen P, Zhu D, et al. 2015 Optica 2 912
Google Scholar
[138] Inoue I, Osaka T, Hara T, et al. 2019 Nat. Photonics 13 319
Google Scholar
[139] Matsumura S, Osaka T, Inoue I, et al. 2020 Opt. Express 28 25706
Google Scholar
[140] Rohringer N, Ryan D, London R A, et al. 2012 Nature 481 488
Google Scholar
[141] Young L, Kanter E P, Kraessig B, et al. 2010 Nature 466 56
Google Scholar
[142] Weninger C, Purvis M, Ryan D, et al. 2013 Phys. Rev. Lett. 111 233902
Google Scholar
[143] Stöhr J, Scherz A 2015 Phys. Rev. Lett. 115 107402
Google Scholar
计量
- 文章访问数: 11215
- PDF下载量: 425
- 被引次数: 0