Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and architectural design for Schottky structure perovskite solar cells

Liang Xiao-Juan Cao Yu Cai Hong-Kun Su Jian Ni Jian Li Juan Zhang Jian-Jun

Citation:

Simulation and architectural design for Schottky structure perovskite solar cells

Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun
PDF
HTML
Get Citation
  • The wx-AMPS simulation software is used to model and simulate the Schottky perovskite thin film solar cells. The front and back electrodes with different work functions are applied to the Schottky perovskite solar cells to study the effect of band structure on the performance of solar cells. The results show that in a range from 3.8 to 4.4 eV, as the work function of the front electrode decreases, the conversion efficiency of the Schottky solar cells gradually increases. When the work function of the front electrode is low, the electric field strength is large, which facilitates the transport of carriers in the light-absorbing layer of the perovskite and reduces the carrier recombination rate of the perovskite layer. In addition, the recombination ratio of the light absorbing layer is reduced due to the increase of the electric field strength, and the parallel resistance is increased to a certain extent thereby increasing the FF and improving the output efficiency of the battery. At the same time, when the current electrode work function is maintained at 3.8 eV, in a range from 4.3 to 5.5 eV, the higher the work function of the back electrode, the greater the conversion efficiency of the Schottky solar cell is. This conduces to the band alignment in contact between perovskite and back electrode. Under the premise that the common electrode Au is used as a back electrode, the work function of the front electrode is 3.8 eV and the conversion efficiency of the Schottky perovskite solar cell is 17.93%. In addition, by using the optimized front and rear contact electrodes, the quality of the perovskite layer material, thus the performance of the solar cell can be further improved. Doping till a certain concentration and removing the defects of the perovskite layer, the conversion efficiency of the solar cell with a thickness of 500 nm can be increased from 17.93% to 20.1%. The simulation results show that the Schottky perovskite thin film solar cells can obtain excellent performance with simple device structure and have great potential applications.
      Corresponding author: Cai Hong-Kun, caihongkun@nankai.edu.cn
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Hodes G 2013 Science 342 317Google Scholar

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295Google Scholar

    [5]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [6]

    Sun X, Zhang C F, Chang J J, Yang H F, Xi H, Lu G, Chen D Z, Lin Z H, Lu X L, Zhang J C, Hao Y 2016 Nano Energy 28 417Google Scholar

    [7]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [8]

    Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf

    [9]

    Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B 2018 Adv. Mater. 30 1703737Google Scholar

    [10]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [11]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [12]

    Chen Z, Wang J J, Ren YH, Yu C L, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [13]

    Piliego C, Protesescu L, Bisri S Z, Kovalenko M V, Loi M A 2013 Energy Environ. Sci. 6 3054Google Scholar

    [14]

    Yang S J, Kim M, Ko H, Sin D H, Sung J H, Mun J, Rho J, Jo M H, Cho K 2018 Adv. Funct. Mater. 28 1804067Google Scholar

    [15]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Small 14 1704443Google Scholar

    [16]

    吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义 2019 68 078801Google Scholar

    Wu B J, Lin D X, Li Z, Cheng Z P, Li X, Chen K, Shi T T, Xie W G, Liu P Y 2019 Acta Phys. Sin. 68 078801Google Scholar

    [17]

    Burgelman M, Verschraegen J, Degrave S, Nollet P 2004 Pro. Photovoltaics 12 143Google Scholar

    [18]

    Liu Y M, Sun Y, Rockett A 2012 Sol. EnergyMater. Sol. Cells 98 124Google Scholar

    [19]

    Yan B, Yang J, Yue G, Lord K, Guha S 2003 Proceedings of 3 rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 pp11–18

    [20]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [21]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [22]

    Liu W Q, Zhang Y 2014 J. Mater. Chem. A2 10244

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Fonash S 2010 Solar Cell Device Physics (2nd Ed.) (New York: Academic) pp1–602

    [26]

    Su J, Cai H K, Ye X F, Zhou X J, Yang J T, Wang D, Ni J, Li J, Zhang J J 2019 ACS Appl. Mater. Interfaces 11 10689Google Scholar

    [27]

    Zhou H P, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [28]

    Zhou Y H, Fuentes-Hrnandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [29]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [30]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lv S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [31]

    Zheng H, Dai S Y, Zhou K X, Liu G Z, Zhang B, Alsaedi A, Hayat T, Pan X 2019 Sci. Mater. 62 508

    [32]

    刘国震, 叶加久, 侯昭升, 陈双宏, 胡林华, 潘旭, 戴松元 2018 高等学校化学学报 39 545Google Scholar

    Liu G Z, Ye J J, Hou Z S, Chen S H, Hu L H, Pan X, Dai S Y 2018 Chem. J. Chin. Univ. 39 545Google Scholar

  • 图 1  器件结构模型及能带示意图 (a), (b)平面异质结结构; (c), (d)肖特基结构

    Figure 1.  Schematic and energy-level diagram of each functional layers of solar cells: (a), (b) planar heterojunction solar cell structure; (c), (d) schottky solar cell structure.

    图 2  平面异质结结构及其衍生的肖特基结构钙钛矿太阳电池的J-V曲线

    Figure 2.  J-V characteristics of pin solar cell structure and Schottky solar cell structure.

    图 3  能带图和光生电子和空穴传输示意图 (a)平面异质结结构; (b)肖特基结构

    Figure 3.  Energy band diagram and schematic diagram of photogenerated electron and hole transport: (a) Pin solar cell structure; (b) Schottky solar cell structure.

    图 4  不同透明导电电极肖特基太阳电池的输出性能 (a) 能带图; (b) 载流子复合率分布; (c) 电场分布能带图; (d) 自由电子密度; (e) 量子效率; (f) J-V特性

    Figure 4.  Schottky solar cells with different front electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.

    图 5  不同对电极肖特基太阳电池的输出性能 (a) 能带图; (b) 载流子复合率分布; (c) 电场分布能带图; (d) 自由电子密度; (e) 量子效率; (f) J-V特性

    Figure 5.  Schottky solar cells with different back electrode: (a) Energy band structure; (b) carrier recombination rate distribution; (c) electric field distribution; (d) free electrons concentration distribution; (e) quantum efficiency; (f) J-V characteristic.

    图 6  不同受主掺杂浓度下太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Figure 6.  Output trends under different acceptor doping concentration: (a) Voc and Jsc; (b) FF and PCE.

    图 7  不同施主掺杂浓度下太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Figure 7.  Output trends under different donor doping concentration: (a) Voc and Jsc; (b) FF and PCE.

    图 8  有无缺陷时肖特基结构钙钛矿太阳电池的输出 (a) J-V特性; (b)量子效应曲线; (c)电子浓度; (d)空穴浓度

    Figure 8.  Output trends under J-V characteristics of Schottky solar cells with and without defect states: (a)J-V characteristic; (b) quantum efficiency; (c) free electrons concentration distribution; (d) free holes concentration distribution.

    图 9  吸收层厚度不同太阳电池的输出特性 (a) 开路电压Voc及短路电流密度Jsc; (b) 填充因子FF与输出效率PCE

    Figure 9.  Output trends under different thickness of absorbing layer: (a) Voc and Jsc; (b) FF and PCE.

    表 1  模型中使用的材料参数

    Table 1.  Material parameters of the Schottky solar cells.

    参数SnO2[20,21]Perovskite[20,22]Spiro-OMeTAD[23-25]
    介电常数9203
    电子亲和势/eV3.51.553
    禁带宽度/eV4.33.752.2
    厚度/nm50500250
    电子/空穴迁移率/cm2·V–1·s–120/1050/500.0002/0.0002
    受主掺杂浓度/cm–3002×1018
    施主掺杂浓度/cm–31×101600
    导带有效状态密度/cm–32.2×10182.2×10182.2×1018
    价带有效状态密度/cm–31.8×10191.8×10191.8×1019
    DownLoad: CSV

    表 2  平面异质结结构和肖特基钙钛矿太阳电池光伏性能参数

    Table 2.  Photovoltaic performance parameters of the pin solar cell structure and Schottky solar cell structure.

    结构Jsc/mA·cm–2Voc/V填充因子FF/%转换效率/%
    平面异质结
    结构
    24.381.0974.9920.01
    肖特基结构20.350.3675.935.64
    DownLoad: CSV

    表 3  不同透明导电电极材料的功函数[27,28]

    Table 3.  Work function of different front electrode materials[27,28].

    材料功函数/eV
    In2O3:F(FTO)4.6[28]
    In2O3:Sn(ITO)4.4[28]
    ITO/PEIE4.0[27]
    FTO/PEIE3.8[28]
    DownLoad: CSV

    表 4  透明导电电极功函数的不同肖特基钙钛矿太阳电池光伏性能参数

    Table 4.  Photovoltaic performance parameters of Schottky solar cells with different front electrode work function.

    功函数/eVJsc/mA·cm–2Voc/VFF/%转换效率/%
    3.824.430.8784.0017.93
    4.024.380.7883.2215.86
    4.424.210.3873.446.80
    4.624.050.1857.002.50
    DownLoad: CSV

    表 5  对电极功函数不同肖特基钙钛矿太阳电池光伏性能

    Table 5.  Photovoltaic performances of Schottky solar cells with different back electrode work function.

    功函数/eVJsc/mA·cm2Voc/VFF/%转换效率/%
    4.323.480.1451.641.73
    4.924.500.7479.6214.38
    5.024.600.8280.9816.35
    5.124.680.9080.5117.39
    5.324.790.9578.1718.58
    5.524.760.9678.1918.75
    DownLoad: CSV

    表 6  有无缺陷的肖特基钙钛矿太阳电池的光电特性

    Table 6.  Photovoltaic performance of Schottky solar cells with and without defect states.

    Jsc/mA·cm2Voc/VFF/%转换效率/%
    有缺陷20.760.9481.9716.06
    无缺陷24.380.948281.5419.22
    DownLoad: CSV
    Baidu
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [3]

    Hodes G 2013 Science 342 317Google Scholar

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, Han H W 2014 Science 345 295Google Scholar

    [5]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [6]

    Sun X, Zhang C F, Chang J J, Yang H F, Xi H, Lu G, Chen D Z, Lin Z H, Lu X L, Zhang J C, Hao Y 2016 Nano Energy 28 417Google Scholar

    [7]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [8]

    Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf

    [9]

    Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B 2018 Adv. Mater. 30 1703737Google Scholar

    [10]

    Zuo C T, Bolink H J, Han H W, Huang J S, Cahen D, Ding L M 2016 Adv. Sci. 3 1500324Google Scholar

    [11]

    丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚 2015 64 038802Google Scholar

    Ding X J, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802Google Scholar

    [12]

    Chen Z, Wang J J, Ren YH, Yu C L, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [13]

    Piliego C, Protesescu L, Bisri S Z, Kovalenko M V, Loi M A 2013 Energy Environ. Sci. 6 3054Google Scholar

    [14]

    Yang S J, Kim M, Ko H, Sin D H, Sung J H, Mun J, Rho J, Jo M H, Cho K 2018 Adv. Funct. Mater. 28 1804067Google Scholar

    [15]

    Duan J L, Zhao Y Y, He B L, Tang Q W 2018 Small 14 1704443Google Scholar

    [16]

    吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义 2019 68 078801Google Scholar

    Wu B J, Lin D X, Li Z, Cheng Z P, Li X, Chen K, Shi T T, Xie W G, Liu P Y 2019 Acta Phys. Sin. 68 078801Google Scholar

    [17]

    Burgelman M, Verschraegen J, Degrave S, Nollet P 2004 Pro. Photovoltaics 12 143Google Scholar

    [18]

    Liu Y M, Sun Y, Rockett A 2012 Sol. EnergyMater. Sol. Cells 98 124Google Scholar

    [19]

    Yan B, Yang J, Yue G, Lord K, Guha S 2003 Proceedings of 3 rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 pp11–18

    [20]

    Laban W A, Etgar L 2013 Energy Environ. Sci. 6 3249Google Scholar

    [21]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [22]

    Liu W Q, Zhang Y 2014 J. Mater. Chem. A2 10244

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Fonash S 2010 Solar Cell Device Physics (2nd Ed.) (New York: Academic) pp1–602

    [26]

    Su J, Cai H K, Ye X F, Zhou X J, Yang J T, Wang D, Ni J, Li J, Zhang J J 2019 ACS Appl. Mater. Interfaces 11 10689Google Scholar

    [27]

    Zhou H P, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [28]

    Zhou Y H, Fuentes-Hrnandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Bredas J L, Marder S R, Kahn A, Kippelen B 2012 Science 336 327Google Scholar

    [29]

    Adhikari K R, Gurung S, Bhattarai B K, Soucase B M 2016 Phys. Status Solidi C 13 13Google Scholar

    [30]

    王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊 2015 64 038403Google Scholar

    Wang D, Zhu H M, Zhou Z M, Wang Z W, Lv S L, Pang S P, Cui G L 2015 Acta Phys. Sin. 64 038403Google Scholar

    [31]

    Zheng H, Dai S Y, Zhou K X, Liu G Z, Zhang B, Alsaedi A, Hayat T, Pan X 2019 Sci. Mater. 62 508

    [32]

    刘国震, 叶加久, 侯昭升, 陈双宏, 胡林华, 潘旭, 戴松元 2018 高等学校化学学报 39 545Google Scholar

    Liu G Z, Ye J J, Hou Z S, Chen S H, Hu L H, Pan X, Dai S Y 2018 Chem. J. Chin. Univ. 39 545Google Scholar

  • [1] Xu Chang, Zheng Dexu, Dong Xinrui, Wu SaJian, Wu MingXing, Wang Kai, Liu Shengzhong(Frank). Research progress of perovskite-based triple-junction tandem solar cells. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241187
    [2] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Wang Qi, Yan Ling-Ling, Chen Bing-Bing, Li Ren-Jie, Wang San-Long, Wang Peng-Yang, Huang Qian, Xu Sheng-Zhi, Hou Guo-Fu, Chen Xin-Liang, Li Yue-Long, Ding Yi, Zhang De-Kun, Wang Guang-Cai, Zhao Ying, Zhang Xiao-Dan. Perovskite/silicon heterojunction tandem solar cells: Advances in optical simulation. Acta Physica Sinica, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [8] Gan Yong-Jin, Jiang Qu-Bo, Qin Bin-Yi, Bi Xue-Guang, Li Qing-Liu. Carrier transport layers of tin-based perovskite solar cells. Acta Physica Sinica, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [9] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [10] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [12] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [13] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [14] Pan Heng, Chen Pei-Run, Shi Biao, Li Yu-Cheng, Gao Qing-Yun, Zhang Li, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Review of the research on nano-structure used as light harvesting in perovskite solar cells. Acta Physica Sinica, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [15] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [16] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [17] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [19] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [20] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
Metrics
  • Abstract views:  12959
  • PDF Downloads:  366
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2019
  • Accepted Date:  13 January 2020
  • Published Online:  05 March 2020

/

返回文章
返回
Baidu
map