-
The freewheeling diode in power electronic converters may generate a voltage peak on the load during the reverse recovery process, and the peak voltage becomes larger when the forward conduction time is smaller, which very likely induces the over-voltage failure of the power devices. To effectively guide the reliability design of power electronic devices, the switching transition mechanism of the PIN freewheeling diode is discussed thoroughly based on semiconductor physics and the essential structure of power diodes. The law of reverse recovery voltage peak variation with switching transition time is deduced by methods of stored charge analysis, which shows that the peak voltage is larger for shorter conduction time and decreases abruptly as the transient conduction time increases. Experiments are carried out using the two-level half-bridge inverter unit with insulated-gate bipolar transistors and PIN diodes. Results show that the reverse recovery voltage peak decreases with the increase of the transition time, following an exponential rule, and tends to be constant after the freewheeling current becomes stable and finally approaches a steady state as the steady forward conduction current vanishes, thus proving the correctness of the presented analysis. This paper shows the theoretical and application values in the optimization of the reverse recovery mechanism of power diodes and the reliability improvement of power converters.
-
Keywords:
- freewheeling diode /
- forward conduction /
- reverse recovery /
- conductivity modulation
[1] Huang A Q, Temple V, Liu Y, Li Y 2003 Solid-State Electron 47 727
[2] Rahimo M T, Shammas N Y A 2001 IEEE Trans. Ind. App. 37 661
[3] [4] Wu R, Blaabjerg F, Wang H, Liserre M 2013 Microelectron. Reliab. 07 15
[5] [6] Matthias S, Geissmann S, Bellini M, Kopta A 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Kanazawa, May 26-30, 2013 p335
[7] [8] [9] Zuo Y H, Wang J G, Fan R Y 2012 Acta Phys. Sin. 61 215202 (in Chinese) [左应红, 王建国, 范如玉 2012 61 215202]
[10] Masuoka F, Nakamura K, Nishii A, Terashima T 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Bruges, June 3-7, 2012, p373
[11] [12] Donlon J F, Motto E R, Honsberg M, Radke T 2011 IEEE Energy Conversion Congress and Exposition (ECCE) Phoenix, AZ, Sept. 17-22, 2011 p4144
[13] [14] [15] Blewitt W M, Gurwicz D I 2008 Electron Lett. 44 1088
[16] Huang J H, L H L, Zhang Y M, Zhang Y M, Tang X Y, Chen F P, Song Q W 2011 Chin. Phys. B 20 118401
[17] [18] [19] Tokura N, Yamamoto T, Kato H, Nakagawa A 2012 Trans. on Ind. App. 132 1726
[20] Baburske R, Heinze B, Lutz J, Niedernostheide F 2008 IEEE Trans. on Electron. Devices 55 2164
[21] [22] [23] Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]
[24] [25] Bertoluzza F, Cova P, Delmonte N, Pampili P, Portesine M 2010 Microelectron. Reliab. 50 1720
[26] Benda V, Gowar J, Grant D A 1999 Power Semiconductor Devices: Theory and Applications (England: John Wiley Sons Ltd Press) pp24-136
[27] [28] Kbanna V K 2003 The Insulated Gate Bipolar Transistor IGBT: Theory and Design (New Jersey: IEEE Press) p177
[29] [30] [31] Anderson B L, Anderson R L 2006 Fundamentals of Semiconductor Devices (U. S.: McGraw-Hill Press) p143
[32] [33] Lutz J, Schlangenotto H, Scheuermann U, Doncker R D 2011 Semiconductor Power Devices: Physics, Characteristics, Reliability (New York: Springer) p189
[34] Tang Y 2010 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]
[35] -
[1] Huang A Q, Temple V, Liu Y, Li Y 2003 Solid-State Electron 47 727
[2] Rahimo M T, Shammas N Y A 2001 IEEE Trans. Ind. App. 37 661
[3] [4] Wu R, Blaabjerg F, Wang H, Liserre M 2013 Microelectron. Reliab. 07 15
[5] [6] Matthias S, Geissmann S, Bellini M, Kopta A 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Kanazawa, May 26-30, 2013 p335
[7] [8] [9] Zuo Y H, Wang J G, Fan R Y 2012 Acta Phys. Sin. 61 215202 (in Chinese) [左应红, 王建国, 范如玉 2012 61 215202]
[10] Masuoka F, Nakamura K, Nishii A, Terashima T 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Bruges, June 3-7, 2012, p373
[11] [12] Donlon J F, Motto E R, Honsberg M, Radke T 2011 IEEE Energy Conversion Congress and Exposition (ECCE) Phoenix, AZ, Sept. 17-22, 2011 p4144
[13] [14] [15] Blewitt W M, Gurwicz D I 2008 Electron Lett. 44 1088
[16] Huang J H, L H L, Zhang Y M, Zhang Y M, Tang X Y, Chen F P, Song Q W 2011 Chin. Phys. B 20 118401
[17] [18] [19] Tokura N, Yamamoto T, Kato H, Nakagawa A 2012 Trans. on Ind. App. 132 1726
[20] Baburske R, Heinze B, Lutz J, Niedernostheide F 2008 IEEE Trans. on Electron. Devices 55 2164
[21] [22] [23] Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]
[24] [25] Bertoluzza F, Cova P, Delmonte N, Pampili P, Portesine M 2010 Microelectron. Reliab. 50 1720
[26] Benda V, Gowar J, Grant D A 1999 Power Semiconductor Devices: Theory and Applications (England: John Wiley Sons Ltd Press) pp24-136
[27] [28] Kbanna V K 2003 The Insulated Gate Bipolar Transistor IGBT: Theory and Design (New Jersey: IEEE Press) p177
[29] [30] [31] Anderson B L, Anderson R L 2006 Fundamentals of Semiconductor Devices (U. S.: McGraw-Hill Press) p143
[32] [33] Lutz J, Schlangenotto H, Scheuermann U, Doncker R D 2011 Semiconductor Power Devices: Physics, Characteristics, Reliability (New York: Springer) p189
[34] Tang Y 2010 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]
[35]
Catalog
Metrics
- Abstract views: 7973
- PDF Downloads: 1672
- Cited By: 0