-
Light-emitting diode (LED) failure mechanism plays an important role in studying and manufacturing LEDs. In this paper, X-ray perspective instrument is used to carry out the non-invasive and real-time X-ray imaging detection of the representative LED packaging products purchased from 5 Chinese companies. A large number of the welded voids are founded in the thermal pad and the void ratio of thermal pad, which represents the ratio of void area to pad area, is more than 30% for all samples. 1 W warm white light LED of GaN-based vertical via structure is selected to study the mechanism of short-circuit invalidation. The method is carried out by the following steps. Firstly, the surface morphologies of failure samples are compared with those of normal samples by visual observation. Secondly, antistatic electric capacity testing instrument is used to detect the existences of the electrical parameter abnormalities of the failure of non-short-circuit samples. Thirdly, decapsulations are operated on samples by using Silica gel dissolving agent. And the microtopographies of the samples are characterized by optical microscope, energy dispersive spectrometer and scanning electron microscopy. Then the cross-sectional morphologies of failure samples are observed. The failure mechanism can be drawn from the characterizations mentioned above. The study shows that the failure mechanism of the vertical structure of GaN-based vias is that the existences of voids in the Ni-Sn alloy back gold layer and solid-crystal layer reduce the interface bonding strength and thermal conductivity of the LED chip. The heat building-up leads to thermal expansion of the air inside the voids, which increases the electrical stress and thermal stress distribution at the LED chip vias. Long-term heat accumulation and higher electrical stress in the through-hole region, where the chip current density is greatest, lead to the crack and break of GaN epitaxial layer, which is so brittle and fragile, around the through-hole region. It can eventually lead to short-circuit of PN junction and then failure of LED. Back gold layer is the heat-conductive and electric-conductive channel of LED. The concentrations of thermal stress and electrical stress caused by voids in the back gold layer further lead to the uneven current distribution on the chip. This is the main reason why GaN epitaxial layer cracks and breaks. Voids in the back gold layer and solid-crystal layer are the direct and indirect causes of LED short-circuit failure, respectively. Therefore, the packaging process should be standardized to avoid the void occurrence, based on the reasons why voids exist. It can finally improve reliability of LED.
-
Keywords:
- light-emitting diode /
- failure analysis /
- void /
- reliability
[1] Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175
[2] Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]
[3] Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]
[4] Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]
[5] Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]
[6] Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327
[7] Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609
[8] Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102
[9] Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]
[10] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]
[11] Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]
[12] Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]
[13] Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111
[14] Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]
[15] Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]
[16] Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113
[17] Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109
[18] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916
[19] Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]
[20] Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409
[21] Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233
[22] Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794
-
[1] Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175
[2] Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]
[3] Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]
[4] Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]
[5] Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]
[6] Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327
[7] Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609
[8] Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102
[9] Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]
[10] Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]
[11] Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]
[12] Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]
[13] Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111
[14] Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]
[15] Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]
[16] Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113
[17] Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109
[18] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916
[19] Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]
[20] Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409
[21] Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233
[22] Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794
计量
- 文章访问数: 5836
- PDF下载量: 211
- 被引次数: 0