搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN基通孔垂直结构的发光二极管失效分析

符民 文尚胜 夏云云 向昌明 马丙戌 方方

引用本文:
Citation:

GaN基通孔垂直结构的发光二极管失效分析

符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方

Failure analysis of GaN-based Light-emitting diode with hole vertical structure

Fu Min, Wen Shang-Sheng, Xia Yun-Yun, Xiang Chang-Ming, Ma Bing-Xu, Fang Fang
PDF
导出引用
  • 基于X-射线透视仪进行无损伤检测发现发光二极管(LED)产品的封装会产生空洞的情况,特选取了GaN基通孔垂直结构的LED短路失效案例进行了失效性研究.利用光学显微镜、能谱仪和扫描电子显微镜对样品微观形貌进行表征,对失效样品进行金相切片处理,观察截面处形貌,最后根据分析结果得出样品的失效机理.分析结果表明:背金层空洞和固晶层空洞的存在加重了芯片通孔处应力不均,加快了GaN外延层的破裂的速度,致使LED失效.因此,在LED的封装过程中,也需要去避免空洞的产生,增加LED的可靠性.
    Light-emitting diode (LED) failure mechanism plays an important role in studying and manufacturing LEDs. In this paper, X-ray perspective instrument is used to carry out the non-invasive and real-time X-ray imaging detection of the representative LED packaging products purchased from 5 Chinese companies. A large number of the welded voids are founded in the thermal pad and the void ratio of thermal pad, which represents the ratio of void area to pad area, is more than 30% for all samples. 1 W warm white light LED of GaN-based vertical via structure is selected to study the mechanism of short-circuit invalidation. The method is carried out by the following steps. Firstly, the surface morphologies of failure samples are compared with those of normal samples by visual observation. Secondly, antistatic electric capacity testing instrument is used to detect the existences of the electrical parameter abnormalities of the failure of non-short-circuit samples. Thirdly, decapsulations are operated on samples by using Silica gel dissolving agent. And the microtopographies of the samples are characterized by optical microscope, energy dispersive spectrometer and scanning electron microscopy. Then the cross-sectional morphologies of failure samples are observed. The failure mechanism can be drawn from the characterizations mentioned above. The study shows that the failure mechanism of the vertical structure of GaN-based vias is that the existences of voids in the Ni-Sn alloy back gold layer and solid-crystal layer reduce the interface bonding strength and thermal conductivity of the LED chip. The heat building-up leads to thermal expansion of the air inside the voids, which increases the electrical stress and thermal stress distribution at the LED chip vias. Long-term heat accumulation and higher electrical stress in the through-hole region, where the chip current density is greatest, lead to the crack and break of GaN epitaxial layer, which is so brittle and fragile, around the through-hole region. It can eventually lead to short-circuit of PN junction and then failure of LED. Back gold layer is the heat-conductive and electric-conductive channel of LED. The concentrations of thermal stress and electrical stress caused by voids in the back gold layer further lead to the uneven current distribution on the chip. This is the main reason why GaN epitaxial layer cracks and breaks. Voids in the back gold layer and solid-crystal layer are the direct and indirect causes of LED short-circuit failure, respectively. Therefore, the packaging process should be standardized to avoid the void occurrence, based on the reasons why voids exist. It can finally improve reliability of LED.
      通信作者: 文尚胜, shshwen@scut.edu.cn
    • 基金项目: 广东省应用型科技研发专项(批准号:2015B010134001);广东省扬帆计划引进创新创业团队专项(批准号:2015YT02C093)和广州市产学研协同创新重大专项(批准号:201604010006)资助的课题.
      Corresponding author: Wen Shang-Sheng, shshwen@scut.edu.cn
    • Funds: Project supported by the Guangdong Province Applied Science and Technology Development,China (Grant No.2015B010134001),the Guangdong Province Sail Plans to Introduce a Special Team of Innovation and Entrepreneurship,China (Grant No.2015YT02C093),and the Guangzhou City Collaborative Innovation Major Projects,China (Grant No.201604010006).
    [1]

    Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175

    [2]

    Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]

    [3]

    Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]

    [4]

    Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]

    [5]

    Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]

    [6]

    Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327

    [7]

    Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609

    [8]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102

    [9]

    Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]

    [10]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]

    [11]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]

    [12]

    Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]

    [13]

    Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111

    [14]

    Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]

    [15]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]

    [16]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113

    [17]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109

    [18]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916

    [19]

    Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]

    [20]

    Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409

    [21]

    Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233

    [22]

    Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794

  • [1]

    Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175

    [2]

    Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]

    [3]

    Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]

    [4]

    Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]

    [5]

    Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]

    [6]

    Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327

    [7]

    Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609

    [8]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102

    [9]

    Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]

    [10]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]

    [11]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]

    [12]

    Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]

    [13]

    Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111

    [14]

    Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]

    [15]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]

    [16]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113

    [17]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109

    [18]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916

    [19]

    Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]

    [20]

    Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409

    [21]

    Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233

    [22]

    Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794

  • [1] 张福平, 李玺钦, 杜金梅, 刘雨生, 叶福庆. 铁电陶瓷脉冲耐压失效分布及耐压可靠性.  , 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [2] 刘举, 曹一伟, 吕全江, 杨天鹏, 米亭亭, 王小文, 刘军林. 超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响.  , 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [3] 吴晓旭, 龙军华, 孙强健, 王霞, 陈志韬, 于梦璐, 罗骁龙, 李雪飞, 赵沪隐, 陆书龙. GaInP/GaAs太阳电池的柔性封装及稳定性.  , 2023, 72(13): 138803. doi: 10.7498/aps.72.20230352
    [4] 王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓. 锂电池失效分析与研究进展.  , 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757
    [5] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法.  , 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [6] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究.  , 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [7] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析.  , 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [8] 曹磊, 刘红侠. 新型SOANN埋层SOI器件的自加热效应研究.  , 2012, 61(17): 177301. doi: 10.7498/aps.61.177301
    [9] 张永进, 宋伟才. 强度应力干涉下多态多系统的可靠性研究.  , 2011, 60(2): 021201. doi: 10.7498/aps.60.021201
    [10] 周文, 刘红侠. 有丢失物缺陷的铜互连线中位寿命的定量研究.  , 2009, 58(11): 7716-7721. doi: 10.7498/aps.58.7716
    [11] 张永进, 汪忠志. 一类分时冗余系统的累伤可靠性模型及其参数估计.  , 2009, 58(9): 6074-6079. doi: 10.7498/aps.58.6074
    [12] 张义民, 张旭方. 复合随机Duffing系统可靠性分析.  , 2008, 57(7): 3989-3995. doi: 10.7498/aps.57.3989
    [13] 王 俊, 王 磊, 董业民, 邹 欣, 邵 丽, 李文军, 杨华岳. 高压双扩散漏端MOS晶体管双峰衬底电流的形成机理及其影响.  , 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [14] 谢国锋, 何旭洪, 童节娟, 郑艳华. 响应面方法计算HTR-10余热排出系统物理过程的失效概率.  , 2007, 56(6): 3192-3197. doi: 10.7498/aps.56.3192
    [15] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征.  , 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [16] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性.  , 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
    [17] 刘红侠, 郑雪峰, 郝 跃. 闪速存储器中应力诱生漏电流的产生机理.  , 2005, 54(12): 5867-5871. doi: 10.7498/aps.54.5867
    [18] 宋国峰, 甘巧强, 瞿 欣, 方培源, 高建霞, 曹 青, 徐 军, 康香宁, 徐 云, 钟 源, 杨国华, 陈良惠. 微小孔径激光器的工艺及器件功率和寿命特性分析.  , 2005, 54(12): 5609-5613. doi: 10.7498/aps.54.5609
    [19] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究.  , 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [20] 柴振明. 群体组合法提高电路元件可靠性的分析.  , 1964, 20(8): 705-719. doi: 10.7498/aps.20.705
计量
  • 文章访问数:  5836
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-22
  • 修回日期:  2016-11-10
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map