-
The reverse inter-system crossing (RISC, CT3 → CT1) process in charge transfer (CT1 and CT3) states is an effective approach to improving the energy utilization rate of excited states, and precise control and full use of the RISC process have important scientific significance and application prospect for fabricating and realizing the efficient exciplex-type organic light-emitting diodes (OLEDs). The conventional exciplex-type OLEDs based on m-MTDATA: Bphen have received extensive attention among researchers owing to the fact that the energy difference between CT1 and CT3 around zero promotes the efficient occurrence of RISC process. But up to now, only transient photoluminescence can infer the existence of RISC process in experiment, which is quite unfavorable for the comprehensive understanding and application of this process to design high-performance OLEDs. Fortunately, in this paper, a series of balanced and unbalanced exciplex-based devices are prepared by changing the donor-acceptor blending ratio in the emitting layer (x% m-MTDATA:y% Bphen; x%, y% is the weight percent) and the carrier density flowing through the device. The RISC process of CT states is directly observed via analyzing fingerprint magneto-conductance (MC) traces of the balanced device at room temperature, and the balanced device has higher electroluminescence (EL) efficiency than the unbalanced device. Specifically, the low-field MC curves of unbalanced device only show an inter-system crossing (ISC) line shape, whereas those from the balanced exciplex device present an RISC line shape at low bias-current and the conversion into an ISC line shape with the further increase of bias current. The line shape transition from RISC to ISC is attributed to the triplet-charge annihilation (TQA) process caused by excessive charge carries under high bias current. Combining the physical microscopic mechanism of device, the above-mentioned MC curves of various exciplex devices can be explained as follows: under the same bias current, extra holes or electrons are generated in the emitter layer of unbalanced devices due to the mismatch of donor-acceptor molecular concentrations. These superfluous holes or electrons will react with the CT3 state, which aggravates the TQA process in the device and weakens the RISC process in which the CT3 state participates. That is to say, there are strong TQA process and weak RISC process in unbalanced exciplex device. Contrarily, the strong RISC process and weak TQA process in the balanced exciplex device are beneficial to the occurrence of delayed fluorescence, resulting in its EL efficiency higher than that of the unbalanced device. This work not only deepens the physical understanding of the influence of donor-acceptor blending ratio on the carrier balance in exciplex devices, but also paves the way for designing highly efficient OLED by fully employing the RISC process of balanced device.
-
Keywords:
- m-MTDATA: Bphen exciplex /
- donor-acceptor blending ratio /
- magneto-conductance /
- reverse inter-system crossing
[1] Goushi K, Adachi C 2012 Appl. Phys. Lett. 101 023306Google Scholar
[2] Park Y S, Lee S H, Kim K H, Kim S Y, Lee J H, Kim J J 2013 Adv. Funct. Mater. 23 4914Google Scholar
[3] Kim K H, Yoo S J, Kim J J 2016 ACS Chem. Mater. 28 1936Google Scholar
[4] Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photon. 6 253Google Scholar
[5] Zhang T Y, Chu B, Zhao B, Jin F M, Yan X W, Gao Y, Wu, H R, Li W L, Su Z S 2014 ACS Appl. Mater Interfaces 6 11907Google Scholar
[6] Chen P, Peng Q M, Bai J W, Zhang S T, Li F 2014 Adv. Opt. Mater. 2 142Google Scholar
[7] Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar
[8] Qu F L, Jia W Y, Tang X T, Xu J, Zhao X, Ma C H, Ye S N 2020 J. Phys. Chem. C 124 9451Google Scholar
[9] Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar
[10] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 61 117106Google Scholar
Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar
[11] Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar
[12] Liu R, Zhang Y, Lei Y L, Chen P 2009 J. Appl. Phys. 105 093719Google Scholar
[13] 卢晨蕾, 贾伟尧, 白江文, 张巧明, 令勇洲, 刘洪, 熊祖洪 2015 中国科学: 技术科学 45 396Google Scholar
Lu C L, Jia W Y, Bai J W, Zhang Q M, Ling Y Z, Liu H, Xiong Z H 2015 Sci. Sin-Tech. 45 396Google Scholar
[14] Xu J, Tang X T, Zhao X, Zhu H Q, Qu F L, Xiong Z H 2020 Phys. Rev. Appl. 14 024011Google Scholar
[15] Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar
[16] 管胜婕, 周林箭, 沈成梅, 张勇 2020 69 167101Google Scholar
Guan S J, Zhou L J, Shen C M, Zhang Y 2020 Acta Phys. Sin. 69 167101Google Scholar
[17] Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 33034Google Scholar
[18] Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar
[19] Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar
[20] Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar
[21] Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar
[22] Wang D, Li W L, Chu B, Su Z S, Bi D F, Zhang D Y, Zhu J Z, Yan F, Chen Y R, Tsuboi T 2008 Appl. Phys. Lett. 92 053304Google Scholar
[23] Naka S, Okada H, Onnagawa H, Tsutsui T 2000 Appl. Phys. Lett. 76 197−199.Google Scholar
[24] Tierce N T, Chen C H, Chiu T L, Lin C F, Bardeen C J, Lee J H, 2018 Phys. Chem. Chem. Phys. 20 27449Google Scholar
[25] Zhu L, Xu K, Wang Y, Chen J, Ma D 2015 Front. Optoelectron. 8 439Google Scholar
[26] Wu F J, Zhao X, Zhu H Q, Tang X T, Ning Y R, Chen J, Chen L X, Xiong Z H 2022 ACS Photonics 9 2713Google Scholar
[27] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉 2022 71 087201Google Scholar
Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar
[28] Attar H A A, Monkman A P 2016 Adv. Mater. 28 8014Google Scholar
[29] Huang Q Y, Zhao S L, Wang P 2018 J. Lumin. 201 38Google Scholar
[30] Nakanotano H, Furukawa T, Morimoto K 2016 Sci. Adv. 2 e1501470Google Scholar
[31] 张巧明, 陈平, 雷衍连, 刘荣, 张勇, 宋群梁, 黄承志, 熊祖洪 2010 中国科学: 物理学 力学 天文学 40 1507Google Scholar
Zhang Q M, Chen P, Lei Y L, Liu R, Zhang Y, Song Q L, Huang C Z, Xiong Z H 2010 Sci-Phys. Mech. Astron. 40 1507Google Scholar
[32] Desai P, Shakya P, Kreouzis T, Gillin W P 2007 Phys. Rev. B 75 094423Google Scholar
[33] Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 30 2005765Google Scholar
[34] Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2022882Google Scholar
-
图 1 (a) 激基复合物器件的能级结构; (b) m-MTDATA纯膜、Bphen纯膜和m-MTDATA:Bphen混合膜的归一化PL谱, 插图展示了m-MTDATA和Bphen的化学分子结构; (c) 器件A—D的归一化电致EL谱; (d) 器件A—D的EL强度随偏置电流的变化曲线
Figure 1. (a) Energy level structure diagram of exciplex device; (b) normalized PL spectra of pure films of m-MTDATA, Bphen and composite film of m-MTDATA:Bphen, the inset shows the chemical molecular structure of m-MTDATA and Bphen; (c) normalized EL spectra of devices A–D; (d) the EL intensity as function of bias current for devices A–D.
图 2 (a)—(d) 室温下器件A—D中电流依赖的MC曲线; (e) 器件A—D中MCL幅值随偏置电流的变化曲线; (f) 不同偏置电流下MCH幅值随给体/受体共混比例的变化曲线
Figure 2. (a)–(d) The current-dependent MC curves of devices A–D at room temperature; (e) the MCL values as a function of bias current in devices A–D; (f) the MCH values as a function of donor-acceptor blending ratio at various bias currents.
-
[1] Goushi K, Adachi C 2012 Appl. Phys. Lett. 101 023306Google Scholar
[2] Park Y S, Lee S H, Kim K H, Kim S Y, Lee J H, Kim J J 2013 Adv. Funct. Mater. 23 4914Google Scholar
[3] Kim K H, Yoo S J, Kim J J 2016 ACS Chem. Mater. 28 1936Google Scholar
[4] Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photon. 6 253Google Scholar
[5] Zhang T Y, Chu B, Zhao B, Jin F M, Yan X W, Gao Y, Wu, H R, Li W L, Su Z S 2014 ACS Appl. Mater Interfaces 6 11907Google Scholar
[6] Chen P, Peng Q M, Bai J W, Zhang S T, Li F 2014 Adv. Opt. Mater. 2 142Google Scholar
[7] Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar
[8] Qu F L, Jia W Y, Tang X T, Xu J, Zhao X, Ma C H, Ye S N 2020 J. Phys. Chem. C 124 9451Google Scholar
[9] Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar
[10] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 61 117106Google Scholar
Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar
[11] Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar
[12] Liu R, Zhang Y, Lei Y L, Chen P 2009 J. Appl. Phys. 105 093719Google Scholar
[13] 卢晨蕾, 贾伟尧, 白江文, 张巧明, 令勇洲, 刘洪, 熊祖洪 2015 中国科学: 技术科学 45 396Google Scholar
Lu C L, Jia W Y, Bai J W, Zhang Q M, Ling Y Z, Liu H, Xiong Z H 2015 Sci. Sin-Tech. 45 396Google Scholar
[14] Xu J, Tang X T, Zhao X, Zhu H Q, Qu F L, Xiong Z H 2020 Phys. Rev. Appl. 14 024011Google Scholar
[15] Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar
[16] 管胜婕, 周林箭, 沈成梅, 张勇 2020 69 167101Google Scholar
Guan S J, Zhou L J, Shen C M, Zhang Y 2020 Acta Phys. Sin. 69 167101Google Scholar
[17] Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 33034Google Scholar
[18] Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar
[19] Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar
[20] Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar
[21] Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar
[22] Wang D, Li W L, Chu B, Su Z S, Bi D F, Zhang D Y, Zhu J Z, Yan F, Chen Y R, Tsuboi T 2008 Appl. Phys. Lett. 92 053304Google Scholar
[23] Naka S, Okada H, Onnagawa H, Tsutsui T 2000 Appl. Phys. Lett. 76 197−199.Google Scholar
[24] Tierce N T, Chen C H, Chiu T L, Lin C F, Bardeen C J, Lee J H, 2018 Phys. Chem. Chem. Phys. 20 27449Google Scholar
[25] Zhu L, Xu K, Wang Y, Chen J, Ma D 2015 Front. Optoelectron. 8 439Google Scholar
[26] Wu F J, Zhao X, Zhu H Q, Tang X T, Ning Y R, Chen J, Chen L X, Xiong Z H 2022 ACS Photonics 9 2713Google Scholar
[27] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉 2022 71 087201Google Scholar
Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar
[28] Attar H A A, Monkman A P 2016 Adv. Mater. 28 8014Google Scholar
[29] Huang Q Y, Zhao S L, Wang P 2018 J. Lumin. 201 38Google Scholar
[30] Nakanotano H, Furukawa T, Morimoto K 2016 Sci. Adv. 2 e1501470Google Scholar
[31] 张巧明, 陈平, 雷衍连, 刘荣, 张勇, 宋群梁, 黄承志, 熊祖洪 2010 中国科学: 物理学 力学 天文学 40 1507Google Scholar
Zhang Q M, Chen P, Lei Y L, Liu R, Zhang Y, Song Q L, Huang C Z, Xiong Z H 2010 Sci-Phys. Mech. Astron. 40 1507Google Scholar
[32] Desai P, Shakya P, Kreouzis T, Gillin W P 2007 Phys. Rev. B 75 094423Google Scholar
[33] Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 30 2005765Google Scholar
[34] Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2022882Google Scholar
Catalog
Metrics
- Abstract views: 3054
- PDF Downloads: 81
- Cited By: 0