Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics for the reaction O+DCl→OD+Cl

Xu Xue-Song Yang Kun Sun Jia-Shi Yin Shu-Hui

Citation:

Dynamics for the reaction O+DCl→OD+Cl

Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the quasi-classical trajectory method the stereodynamics of the O+DCl→OD+Cl reaction on the ground potential energy surface is investigated. The characteristic of calculated integral cross-section is consistent with that of the non-energy barrier reaction path on the potential energy surface, which implies that the title reaction is a typical exothermic reaction. The obtained differential reaction cross-section shows that the products tend to both forward and backward scattering, and the forward scattering is stronger than the backward one. So we can infer that the reaction follows the indirect reaction mechanism that has been verified by the randomly abstractive reaction trajectories. The distribution curves of P(θr) and 2(J'· K)> reflect that the degree of rotational alignment of the product OD first increases and then decreases with collision energy increasing. The product rotational angular momentum vector J' is aligned along the y-axis direction but is oriented along the positive direction of y-axis at higher collision energy. With the increase of the collision energy the rotation mechanism of the product molecules transits from the “in-plane” mechanism to the “out-of-plane” mechanism.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304028) and the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. 3132014228).
    [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

  • [1]

    Bernstein R B, Herschbach D R, Levine R D 1987 J. Phys. Chem. 91 5365

    [2]

    Xu G L, Liu P, Liu Y L, Zhang L, Liu Y F 2013 Acta Phys. Sin. 62 223402 (in Chinese)[徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳 2013 62 223402]

    [3]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [4]

    Hsu D S Y, Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 116

    [5]

    Tyndall G W, de Vries M S, Cobb C L, Martin R M 1992 Chem. Phys. Lett. 195 279

    [6]

    Li R J, Li F E, Han K L, Lu R C, He G Z, Lou N Q 1993 Proceedings of the International Conference on Lasers and Applications Houston, USA, December 7-10, 1992 p456

    [7]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese)[夏文泽, 于永江, 杨传路 2012 61 223401]

    [8]

    Kramer K H, Bernstein R B 1965 J. Chem. Phys. 42 767

    [9]

    Loesch H J, Remscheid A 1990 J. Chem. Phys. 93 4779

    [10]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [11]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [12]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [13]

    Shafer-Ray N E, Orr-Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [14]

    Aoiz F J, Herrero V J, Sáez Rábanos V 1992 J. Chem. Phys. 97 7423

    [15]

    Li H, Zheng B, Yin J Q, Meng Q T 2011 Chin. Phys. B 20 123401

    [16]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [17]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [18]

    Balucani N, Beneventi L, Casavecchia P, Stranges D, Volpi G G 1991 J. Chem. Phys. 94 8611

    [19]

    Zhang R, van der Zande W J, Bronikowski M J, Zare R N 1991 J. Chem. Phys. 94 2704

    [20]

    Mahmud K, Kim J S, Fontijn A 1990 J. Phys. Chem. 94 2994

    [21]

    Rakestraw D J, McKendrick K G, Zare R N 1987 J. Chem. Phys. 87 7341

    [22]

    Park C R, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [23]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [24]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [25]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [26]

    Ge M H, Zheng Y J 2012 Chem. Phys. 392 185

    [27]

    Wei Q, Li T, Zhou B, Wu V W K 2009 J. Mol. Struct.: Theochem. 913 162

    [28]

    Zhu T, Hu G D, Zhang Q G 2010 J. Mol. Struct.: Theochem. 948 36

    [29]

    Ge M H, Zheng Y J 2011 Theor. Chem. Acc. 129 173

    [30]

    Ge M H, Zheng Y J 2012 J. At. Mol. Phys. 29 211 (in Chinese) [葛美华, 郑雨军 2012 原子与分子 29 211]

    [31]

    Wei Q, Wu V W K, Zhou B 2009 J. Theor. Comput. Chem. 8 1177

    [32]

    Liu H R, Liu X G, Zhu T, Sun H Z, Zhang Q G 2010 J. Theor. Comput. Chem. 9 1033

    [33]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [34]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

    [35]

    Bittererova M, Bowman J M, Peterson K A 2000 J. Chem. Phys. 113 6186

    [36]

    Last I, Baer M 1984 J. Chem. Phys. 80 3246

    [37]

    Sayos R, Hernando J, Hijazo J, Gonzalez M 1999 Phys. Chem. Chem. Phys. 1 947

    [38]

    Sayos R, Hernando J, Francia R, Gonzalez M 2000 Phys. Chem. Chem. Phys. 2 523

    [39]

    Aoiz F J, Banares L, Herrero V J, Sáez Rábanos V, Stark K, Werner H J 1994 Chem. Phys. Lett. 223 215

    [40]

    Bradley K S, Schatz G C 1998 J. Chem. Phys. 108 7994

    [41]

    Wu G S, Schatz G C, Lendvay G, Fang D C, Harding L B 2000 J. Chem. Phys. 113 3150

    [42]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [43]

    Li W L, Wang M S, Yang C, Liu W, Sun C, Ren T 2007 Chem. Phys. 337 93

    [44]

    Xu W W, Liu X G, Zhang Q G 2008 Mol. Phys. 106 1787

    [45]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [46]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

  • [1] Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin. Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV. Acta Physica Sinica, 2022, 71(19): 192501. doi: 10.7498/aps.71.20220776
    [2] Tang Xiao-Ping, He Xiao-Hu, Zhou Can-Hua, Yang Yang. Effect of reagent vibrational excitation on reaction of H+CH+C++H2. Acta Physica Sinica, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [3] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [4] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] Hu Mei, Liu Xin-Guo, Tan Rui-Shan. Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H. Acta Physica Sinica, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [6] Ma Jian-Jun. Collision energy effect on stereodynamics for Sr+CH3I→SrI+CH3. Acta Physica Sinica, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [7] Tan Rui-Shan, Liu Xin-Guo, Hu Mei. Stereodynamics study of Li+HF (v = 0–3,j = 0)→LiF+H reaction. Acta Physica Sinica, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [8] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [9] Ma Jian-Jun. Effect of rotational excitation of NO on the stereodynamics for the reaction N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P). Acta Physica Sinica, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [10] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [11] Li Hong, Zheng Bin, Meng Qing-Tian. Quasi-classical trajectory approach to the influence of the rotational excitation on the stereodynamics of the reaction O+HBrOH+Br. Acta Physica Sinica, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [12] Wang Ping. The quasi-classical trajectory study in the reaction C+OH(v=0—3, j=0—3)→CO+H. Acta Physica Sinica, 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [13] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [14] Xu Xue-Song, Zhang Wen-Qin, Jin Kun, Yin Shu-Hui. Effect of vibrational quantum number on stereodynamics of reaction O+HCl→OH+Cl. Acta Physica Sinica, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [15] Liu Xin-Guo, Sun Hai-Zhu, Liu Hui-Rong, Zhang Qing-Gang. Stereodynamics study of O+ +H2 reaction and its isotopic variants. Acta Physica Sinica, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [16] Feng Xing, Zhu Zheng-He, Liu Xiao-Ya, Yang Xiang-Dong, Huang Wei. Theoretical study on molecular reaction dynamics of the SiH2 system. Acta Physica Sinica, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [17] Kong Hao, Liu Xin-Guo, Xu Wen-Wu, Liang Jing-Juan, Zhang Qing-Gang. Stereodynamics study of the reactions of He+H+2 and its isotopic variants. Acta Physica Sinica, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [18] Lu Xiao, Sun Xiao-Jun, Yang Yong-Xu. Study on the 16O(p,pα)12C and 16O (α,2α) 12C knockout reactions according to the independent α-cluster mode l. Acta Physica Sinica, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [19] Sun Gui-Hua, Yang Xiang-Dong. . Acta Physica Sinica, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] NING ZHEN-JIANG, LI JIA-XING, GUO ZHONG-YAN, ZHAN WEN-LONG, WANG JIAN-SONG, XIAO GUO-QING, WANG QUAN-JIN, WANG JIN-CHUAN, WANG MENG, WANG JIAN-FENG, CHEN ZHI-QIANG. MEASUREMENT OF TOTAL REACTION CROSS SECTIONFOR EXOTIC LIGHT PROTON-RICH NUCLEUS 12N. Acta Physica Sinica, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
Metrics
  • Abstract views:  5858
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2013
  • Accepted Date:  23 January 2014
  • Published Online:  05 May 2014

/

返回文章
返回
Baidu
map