-
The complex polarizations of three kinds of general dispersive medium models, i.e. Debye model, Lorentz model, Drude model, are described by rational polynomial fraction in jω. The relationship between the polarization vector P and the intensity of electric field E in time domain is obtained by utilizing the transformation relationship from frequency domain to time domain jω→∂/∂t. Then, the time domain second order equation is solved by using the Newmark β and γ method, which has higher accuracy than the traditional center difference method. Once the recursive formulations for E and P are obtained, the recursive formulations for D and E in time domain can be also obtained based on the constitutive relation. Therefore for a dispersive medium the iterative electromagnetic field calculation is conducted by finite-difference time-domain (FDTD) method. The present numerical results demonstrate that the proposed method is a general algorithm for three kinds of general dispersive medium models, and has higher accuracy than the shift operator-FDTD, which is based on the central difference discrete scheme.
-
Keywords:
- Newmark method /
- dispersive media /
- electromagnetic scattering /
- finite-difference time-domain method
[1] Yee K S 1966 IEEE Trans. Antennas Propag. AP-14 302
[2] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[3] Li X F, Pan S, Guo Y N, Wang Q 2011 Chin. Phys. B 20 015204
[4] Bavil M A, Sun X D 2013 Chin. Phys. B 22 047808
[5] Lu W F, Li C, Huang S H, Lin G Y, Wang C, Yan G M, Huang W, Lai H K, Chen S Y 2013 Chin. Phys. B 22 107703
[6] Li Q B, Wu R X, Yang Y, Sun H L 2013 Chin. Phys. Lett. 30 074208
[7] Taflove A, Hagness S C 2005 Computational Electrodynamics the Finite-Difference Time-Domain Method (3rd Ed.) (Boston London: Artech House) p374
[8] Luebbers R J, Hunsberger F, Kunz K S 1990 IEEE Trans. Electromagn. Compat. 32 222
[9] Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propag. 39 29
[10] Luebbers R J, Hunsberger F 1992 IEEE Trans. Antennas Propag. 40 1297
[11] Pontalti R, Cristoforetti L, Antolini R, Cescatti L 1996 IEEE Trans. Microwave Theory Tech. 42 526
[12] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propag. 44 792
[13] Chen Q, Katsurai M, Aoyagi P H 1998 IEEE Trans. Antennas Propag. 46 1739
[14] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese)[刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[15] Xu L J, Yuan N C 2005 IEEE Microwave Wireless Compon. Lett. 15 277
[16] Nickisch L J, Franke P M 1992 IEEE Antennas Propag. Mag. 34 33
[17] Takayama Y, Klaus W 2002 IEEE Microwave Wireless Compon. Lett. 12 102
[18] Sullivan D M 1992 IEEE Trans. Antennas Propag. 40 1223
[19] Sullivan D M 1995 IEEE Trans. Antennas Propag. 43 676
[20] Sullivan D M 1996 IEEE Trans. Antennas Propag. 44 28
[21] Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]
[22] Wei B, Ge D B, Wang F 2008 Acta Phys. Sin. 57 6290 (in Chinese)[魏兵, 葛德彪, 王飞 2008 57 6290]
[23] Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese)[张玉强, 葛德彪 2009 58 4573]
[24] NewMark N M 1959 J. Eng. Mech. Div. 85 67
[25] Zienkiewich O C 1977 Earthquate Eng. Struct. Dyn. 5 413
[26] Wood W L 1984 Int. J. Numer. Meth. Eng. 20 1009
[27] Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an : Xidian University Press) p262 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分法 (第三版) (西安: 西安电子科技大学出版社) 第262页]
-
[1] Yee K S 1966 IEEE Trans. Antennas Propag. AP-14 302
[2] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[3] Li X F, Pan S, Guo Y N, Wang Q 2011 Chin. Phys. B 20 015204
[4] Bavil M A, Sun X D 2013 Chin. Phys. B 22 047808
[5] Lu W F, Li C, Huang S H, Lin G Y, Wang C, Yan G M, Huang W, Lai H K, Chen S Y 2013 Chin. Phys. B 22 107703
[6] Li Q B, Wu R X, Yang Y, Sun H L 2013 Chin. Phys. Lett. 30 074208
[7] Taflove A, Hagness S C 2005 Computational Electrodynamics the Finite-Difference Time-Domain Method (3rd Ed.) (Boston London: Artech House) p374
[8] Luebbers R J, Hunsberger F, Kunz K S 1990 IEEE Trans. Electromagn. Compat. 32 222
[9] Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propag. 39 29
[10] Luebbers R J, Hunsberger F 1992 IEEE Trans. Antennas Propag. 40 1297
[11] Pontalti R, Cristoforetti L, Antolini R, Cescatti L 1996 IEEE Trans. Microwave Theory Tech. 42 526
[12] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propag. 44 792
[13] Chen Q, Katsurai M, Aoyagi P H 1998 IEEE Trans. Antennas Propag. 46 1739
[14] Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese)[刘少斌, 莫锦军, 袁乃昌 2004 53 778]
[15] Xu L J, Yuan N C 2005 IEEE Microwave Wireless Compon. Lett. 15 277
[16] Nickisch L J, Franke P M 1992 IEEE Antennas Propag. Mag. 34 33
[17] Takayama Y, Klaus W 2002 IEEE Microwave Wireless Compon. Lett. 12 102
[18] Sullivan D M 1992 IEEE Trans. Antennas Propag. 40 1223
[19] Sullivan D M 1995 IEEE Trans. Antennas Propag. 43 676
[20] Sullivan D M 1996 IEEE Trans. Antennas Propag. 44 28
[21] Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]
[22] Wei B, Ge D B, Wang F 2008 Acta Phys. Sin. 57 6290 (in Chinese)[魏兵, 葛德彪, 王飞 2008 57 6290]
[23] Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese)[张玉强, 葛德彪 2009 58 4573]
[24] NewMark N M 1959 J. Eng. Mech. Div. 85 67
[25] Zienkiewich O C 1977 Earthquate Eng. Struct. Dyn. 5 413
[26] Wood W L 1984 Int. J. Numer. Meth. Eng. 20 1009
[27] Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an : Xidian University Press) p262 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分法 (第三版) (西安: 西安电子科技大学出版社) 第262页]
Catalog
Metrics
- Abstract views: 7915
- PDF Downloads: 555
- Cited By: 0