搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应物分子初始振动激发对H+CH+C++H2反应的影响

唐晓平 和小虎 周灿华 杨阳

引用本文:
Citation:

反应物分子初始振动激发对H+CH+C++H2反应的影响

唐晓平, 和小虎, 周灿华, 杨阳

Effect of reagent vibrational excitation on reaction of H+CH+C++H2

Tang Xiao-Ping, He Xiao-Hu, Zhou Can-Hua, Yang Yang
PDF
导出引用
  • 在CH2+体系的电子基态势能面上运用准经典轨线方法,研究了当碰撞能E=500 meV时,反应物分子的振动激发对H(2S)+CH+(X1+)C+(2P)+H2(X1g+)反应的反应概率、反应截面和立体动力学性质的影响.分别计算了两矢量相关k-j'的P(r)分布,三矢量相关k-k'-j'的P(r)分布以及反应产物的四个极化微分截面.结果表明,产物分子转动角动量不仅在Y轴方向有取向效应,还定于Y轴的正方向.并且发现,随着振动量子数的增加,对反应体系产物分布的影响就越明显.
    The effect of reagent vibrational excitation on the stereodynamical properties of H(2S)+CH+(X1+)C+(2P)+H2(X1g+)reaction is investigated by quasi-classical trajectory method on a globally smooth ab initio potential surface of the 2A' state at a collision energy of 500 meV. The reaction probability and the reaction cross-section are also studied. In the calculation, the vibrational levels of the reactant molecules are taken as v = 0, 1, 3, 5 and j = 0, respectively, where v is the vibrational quantum number and j is the rotational quantum number. The calculation results show that the reaction probability reaches a maximum when v = 1, and then decreases with the vibrational quantum number increasing. The integral cross-section decreases sharply with the increase of vibrational quantum number. The potential distribution P(r), the dihedral angle distribution P(r), and the polarization-dependent generalized differential cross sections are calculated. P(r) represents the relation between the reagent relative velocity k and the product rotational angular momentum j'. P(r) describes the correlation of k-k'-j', in which k' is the product reagent relative velocity. The peak of P(r) is at r = 90 and symmetric with respect to 90, which shows that the product rotational angular momentum vector is strongly aligned along the direction perpendicular to the relative velocity direction. The peak of P(r) distribution becomes increasingly obvious with the increase of the rotational quantum number. The dihedral angle distribution P(r) tends to be asymmetric with respect to the k-k' scattering plane (or about r= 180), directly reflecting the strong polarization of the product angular momentum for the title reaction. Each curve has two evident peaks at about r = 90 and r = 270, but the two peak intensities are obviously different, which suggests that j' is not only aligned, but also strongly orientated along the Y-axis of the center-of-mass frame. The peak at r= 90 is apparently stronger than that at r = 270, which indicates that j' tends to be oriented along the positive direction of Y-axis. In order to validate more information, we also plot the angular momentum polarization in the forms of polar plots r and r. The distribution of P(r; r) is well consistent with the distribution P(r) and also the distribution P(r) of the products at different vibrational quantum states. In addition, the polarization-dependent differential cross section is quite sensitive to the reagent vibrational excitation. Based on the obtained results, we find that the observed excess of the methylidyne cation CH+ is closely related to the reactant of vibrational excitation in interstellar chemistry.
      通信作者: 和小虎, huzi233@126.com
    • 基金项目: 国家自然科学基金(批准号:21403226,21503226)资助的课题.
      Corresponding author: He Xiao-Hu, huzi233@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21403226, 21503226).
    [1]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [3]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [4]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [5]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [6]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [7]

    Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [9]

    Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [10]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [11]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [12]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [13]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [14]

    Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731

    [15]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [16]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [17]

    Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 66 023401]

    [18]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [19]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [20]

    Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75

    [21]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [22]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]

    [23]

    Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]

    [24]

    Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401

    [25]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [26]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学 11 525]

  • [1]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [3]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [4]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [5]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [6]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [7]

    Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [9]

    Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [10]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [11]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [12]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [13]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [14]

    Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731

    [15]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [16]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [17]

    Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 66 023401]

    [18]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [19]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [20]

    Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75

    [21]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [22]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]

    [23]

    Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]

    [24]

    Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401

    [25]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [26]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学 11 525]

  • [1] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响.  , 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [2] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质.  , 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [3] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [4] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [5] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究.  , 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [6] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响.  , 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [7] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响.  , 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [8] 徐峰, 郑雨军. 量子相空间纠缠轨线力学.  , 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [9] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质.  , 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [10] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究.  , 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [11] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究.  , 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [12] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究.  , 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [13] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] 王平. C+OH(v=0—3, j=0—3)→CO+H反应的准经典轨线研究.  , 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [15] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响.  , 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究.  , 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [18] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] 武连文, 程乾生. 关于动力学互相关因子指数的注记.  , 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [20] 张宗燧. 在经典电动力学中纵场的消除.  , 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
计量
  • 文章访问数:  5341
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 修回日期:  2017-04-14
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map