Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV

Zhu Chuan-Xin Qin Jian-Guo Zheng Pu Jiang Li Zhu Tong-Hua Lu Xin-Xin

Citation:

Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV

Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin
PDF
HTML
Get Citation
  • Natural iridium acts as a high-quality activated detector for probing the energy components of a neutron fluence. Measurements of 191Ir(n,2n)190Ir cross sections are carried out near 14 MeV by the activation method based on 93Nb(n,2n)92mNb reaction cross section standard by PD-300 neutron generator DT neutron source. The (n,2n) products are measured by using a calibrated high pure Ge detector. The cross sections of 191Ir(n,2n)190Ir, σm2 and σg+m1, are measured carefully. The 191Ir(n,2n)190Ir cross sections: σm2, σg+m1, σg+m1+m2 and cross section ratio of σm2/σg+m1 are obtained in an energy range of 13.40–14.86 MeV. Experimental uncertainties are in a range of 3.4%–3.5%. The measured cross sections for the reaction of 191Ir(n,2n)190Ir at 14 MeV are σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, and σm2/σg+m1 = 0.0690 ± 0.0024. The present data are compared with the previous experimental data and the ENDF/B-VIII.0 and JEFF3.0/A evaluated data, showing that the experimental data from the literature are in good agreement with the present data for σg+m1, the evaluated data from JEFF3.0/A are underestimated by 5%–20% in comparison with the present data for σm2, the evaluated data from ENDF/B-VIII.0 are underestimated by 10% in comparison with the present data for σm2, and the ENDF/B-VIII.0 data are consistent with the present data for σg+m1+m2. The discrepancies between the data from the literature and the present data are analyzed and clarified. The present data show significant improvement in accuracy in comparison with data from the literature, these results provide more reliable nuclear data for improving the future evaluation.
      Corresponding author: Zhu Chuan-Xin, zcx_602@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775200).
    [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

  • 图 1  190Ir衰变纲图

    Figure 1.  Simplified representation of formation and decay of 190Ir.

    图 2  (n,2n)激发函数实验装置

    Figure 2.  Experiment assembly of (n,2n) excitation fuction.

    图 3  样品放置

    Figure 3.  Sample setting.

    图 4  样品及实验装置照片

    Figure 4.  The picture of experiment assembly and sample.

    图 5  高纯锗探测效率曲线

    Figure 5.  Efficiency-energy curve for Ge detector.

    图 6  冷却2 d后的铱样品γ谱

    Figure 6.  The γ-ray spectra of iridium sample with 2 d cooling time.

    图 7  190Ir激发态γ谱

    Figure 7.  The γ-ray spectra of 190 m2Ir.

    图 8  92 mNb的γ谱

    Figure 8.  The γ-ray spectra of 92 mNb.

    图 9  σg+m1实验结果与文献及评价数据的比较

    Figure 9.  Comparison with reference and the available evaluated data of σg+m1.

    图 10  σm2与文献及评价数据的比较

    Figure 10.  Comparison with reference and the available evaluated data of σm2.

    图 11  σg+m1+m2与文献及评价数据的比较

    Figure 11.  Comparison with reference and the available evaluated data of σg+m1+m2.

    表 1  样品参数

    Table 1.  Sample characteristics.

    样品纯度/%同位素成分/%厚度/mm直径/mm
    Nb99.99993Nb 1000.520
    Ir99.95191Ir 37.30.520
    193Ir 62.7
    DownLoad: CSV

    表 2  在实验数据分析中使用的同位素参数

    Table 2.  Details of radioactivity constants used in analysis of experimental data.

    核素半衰期Eγ/keVIγ
    92mNb10.15 d934.440.9915
    190gIr11.78 d371.240.216
    190m2Ir3.087 h616.500.9015
    DownLoad: CSV

    表 3  191Ir(n,2n)190Ir反应截面及截面比实验结果

    Table 3.  The 191Ir(n,2n)190Ir cross sections and cross section ratio from this work.

    En/MeVσg+m1/mbσm2/mbσ/mbσm2/σg+m1
    13.401939.42 ± 65.94122.09 ± 4.292061.51 ± 70.230.0630 ± 0.0022
    13.601957.66 ± 66.56128.30 ± 4.582085.96 ± 71.140.0655 ± 0.0023
    13.801963.28 ± 66.75132.92 ± 4.852096.20 ± 71.600.0677 ± 0.0024
    14.001972.35 ± 67.06136.05 ± 4.932108.40 ± 71.990.0690 ± 0.0024
    14.201977.33 ± 67.23140.08 ± 5.032117.41 ± 72.260.0708 ± 0.0025
    14.401981.92 ± 67.39150.98 ± 5.342132.90 ± 72.730.0762 ± 0.0026
    14.601980.04 ± 67.32161.50 ± 5.822141.54 ± 73.140.0816 ± 0.0029
    14.801981.45 ± 67.37164.25 ± 5.872145.70 ± 73.240.0829 ± 0.0029
    14.861964.28 ± 66.79158.56 ± 5.722122.84 ± 72.510.0807 ± 0.0028
    DownLoad: CSV

    表 4  反应截面测量结果的不确定度

    Table 4.  Uncertainties in the cross section.

    不确定度来源不确定度
    %
    93Nb(n,2n)92mNb反应截面数据2.0
    伴随α粒子相对监测1.0
    HPGe探测器效率刻度2.0
    特征γ射线峰计数0.7—0.9
    衰变数据1.0
    时间因子0.5
    修正因子1.0
    总不确定度3.4—3.5
    DownLoad: CSV
    Baidu
  • [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

  • [1] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [2] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [3] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [4] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [5] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [6] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [7] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [8] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [9] Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui. Dynamics for the reaction O+DCl→OD+Cl. Acta Physica Sinica, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [10] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] Chen Xue-Wen, Fang Zhen-Yun, Zhang Jia-Wei, Zhong Tao, Tu Wei-Xing. Renormalization of two neutral mixing-loop chain propagators in standard model and its e+e-→μ+μ- cross section. Acta Physica Sinica, 2011, 60(2): 021101. doi: 10.7498/aps.60.021101
    [12] Zhu Zhi-Yan, Zhu Zheng-He, Zhang Li, Li Pei-Gang, Tang Wei-Hua, Zheng Ying-Ying. Isotope interchange reaction dynamics of the T+OD system. Acta Physica Sinica, 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [13] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jia Xiao-Peng, Li Gui-Ju. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis. Acta Physica Sinica, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [14] Feng Xing, Zhu Zheng-He, Liu Xiao-Ya, Yang Xiang-Dong, Huang Wei. Theoretical study on molecular reaction dynamics of the SiH2 system. Acta Physica Sinica, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [15] Pan Yu, Wang Kai-Jun, Fang Zhen-Yun, Wang Xian-You, Peng Qing-Jun. Accurately calculate cross section of the n+n→2π0 reaction in the n-n renormalization chain diagram. Acta Physica Sinica, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [16] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [17] Lu Xiao, Sun Xiao-Jun, Yang Yong-Xu. Study on the 16O(p,pα)12C and 16O (α,2α) 12C knockout reactions according to the independent α-cluster mode l. Acta Physica Sinica, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [18] Sun Gui-Hua, Yang Xiang-Dong. . Acta Physica Sinica, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [19] NING ZHEN-JIANG, LI JIA-XING, GUO ZHONG-YAN, ZHAN WEN-LONG, WANG JIAN-SONG, XIAO GUO-QING, WANG QUAN-JIN, WANG JIN-CHUAN, WANG MENG, WANG JIAN-FENG, CHEN ZHI-QIANG. MEASUREMENT OF TOTAL REACTION CROSS SECTIONFOR EXOTIC LIGHT PROTON-RICH NUCLEUS 12N. Acta Physica Sinica, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
    [20] YAO LI-SHAN, JIN YU-LING, CAI DUN-JIU. A STUDY OF THE SYSTEMATICS FOR (n,T) AND (n, 3He) REACTION CROSS SECTIONS AT 14 MeV. Acta Physica Sinica, 1993, 42(1): 17-24. doi: 10.7498/aps.42.17
Metrics
  • Abstract views:  3917
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2022
  • Accepted Date:  24 May 2022
  • Available Online:  27 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回
Baidu
map