Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV

Zhu Chuan-Xin Qin Jian-Guo Zheng Pu Jiang Li Zhu Tong-Hua Lu Xin-Xin

Citation:

Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV

Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin
cstr: 32037.14.aps.71.20220776
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Natural iridium acts as a high-quality activated detector for probing the energy components of a neutron fluence. Measurements of 191Ir(n,2n)190Ir cross sections are carried out near 14 MeV by the activation method based on 93Nb(n,2n)92mNb reaction cross section standard by PD-300 neutron generator DT neutron source. The (n,2n) products are measured by using a calibrated high pure Ge detector. The cross sections of 191Ir(n,2n)190Ir, σm2 and σg+m1, are measured carefully. The 191Ir(n,2n)190Ir cross sections: σm2, σg+m1, σg+m1+m2 and cross section ratio of σm2/σg+m1 are obtained in an energy range of 13.40–14.86 MeV. Experimental uncertainties are in a range of 3.4%–3.5%. The measured cross sections for the reaction of 191Ir(n,2n)190Ir at 14 MeV are σm2 = (136.05 ± 4.93) mb, σg+m1 = (1972.35 ± 67.06) mb, σg+m1+m2 = (2108.40 ± 71.99) mb, and σm2/σg+m1 = 0.0690 ± 0.0024. The present data are compared with the previous experimental data and the ENDF/B-VIII.0 and JEFF3.0/A evaluated data, showing that the experimental data from the literature are in good agreement with the present data for σg+m1, the evaluated data from JEFF3.0/A are underestimated by 5%–20% in comparison with the present data for σm2, the evaluated data from ENDF/B-VIII.0 are underestimated by 10% in comparison with the present data for σm2, and the ENDF/B-VIII.0 data are consistent with the present data for σg+m1+m2. The discrepancies between the data from the literature and the present data are analyzed and clarified. The present data show significant improvement in accuracy in comparison with data from the literature, these results provide more reliable nuclear data for improving the future evaluation.
      Corresponding author: Zhu Chuan-Xin, zcx_602@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775200).
    [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

  • 图 1  190Ir衰变纲图

    Figure 1.  Simplified representation of formation and decay of 190Ir.

    图 2  (n,2n)激发函数实验装置

    Figure 2.  Experiment assembly of (n,2n) excitation fuction.

    图 3  样品放置

    Figure 3.  Sample setting.

    图 4  样品及实验装置照片

    Figure 4.  The picture of experiment assembly and sample.

    图 5  高纯锗探测效率曲线

    Figure 5.  Efficiency-energy curve for Ge detector.

    图 6  冷却2 d后的铱样品γ谱

    Figure 6.  The γ-ray spectra of iridium sample with 2 d cooling time.

    图 7  190Ir激发态γ谱

    Figure 7.  The γ-ray spectra of 190 m2Ir.

    图 8  92 mNb的γ谱

    Figure 8.  The γ-ray spectra of 92 mNb.

    图 9  σg+m1实验结果与文献及评价数据的比较

    Figure 9.  Comparison with reference and the available evaluated data of σg+m1.

    图 10  σm2与文献及评价数据的比较

    Figure 10.  Comparison with reference and the available evaluated data of σm2.

    图 11  σg+m1+m2与文献及评价数据的比较

    Figure 11.  Comparison with reference and the available evaluated data of σg+m1+m2.

    表 1  样品参数

    Table 1.  Sample characteristics.

    样品纯度/%同位素成分/%厚度/mm直径/mm
    Nb99.99993Nb 1000.520
    Ir99.95191Ir 37.30.520
    193Ir 62.7
    DownLoad: CSV

    表 2  在实验数据分析中使用的同位素参数

    Table 2.  Details of radioactivity constants used in analysis of experimental data.

    核素半衰期Eγ/keVIγ
    92mNb10.15 d934.440.9915
    190gIr11.78 d371.240.216
    190m2Ir3.087 h616.500.9015
    DownLoad: CSV

    表 3  191Ir(n,2n)190Ir反应截面及截面比实验结果

    Table 3.  The 191Ir(n,2n)190Ir cross sections and cross section ratio from this work.

    En/MeVσg+m1/mbσm2/mbσ/mbσm2/σg+m1
    13.401939.42 ± 65.94122.09 ± 4.292061.51 ± 70.230.0630 ± 0.0022
    13.601957.66 ± 66.56128.30 ± 4.582085.96 ± 71.140.0655 ± 0.0023
    13.801963.28 ± 66.75132.92 ± 4.852096.20 ± 71.600.0677 ± 0.0024
    14.001972.35 ± 67.06136.05 ± 4.932108.40 ± 71.990.0690 ± 0.0024
    14.201977.33 ± 67.23140.08 ± 5.032117.41 ± 72.260.0708 ± 0.0025
    14.401981.92 ± 67.39150.98 ± 5.342132.90 ± 72.730.0762 ± 0.0026
    14.601980.04 ± 67.32161.50 ± 5.822141.54 ± 73.140.0816 ± 0.0029
    14.801981.45 ± 67.37164.25 ± 5.872145.70 ± 73.240.0829 ± 0.0029
    14.861964.28 ± 66.79158.56 ± 5.722122.84 ± 72.510.0807 ± 0.0028
    DownLoad: CSV

    表 4  反应截面测量结果的不确定度

    Table 4.  Uncertainties in the cross section.

    不确定度来源不确定度
    %
    93Nb(n,2n)92mNb反应截面数据2.0
    伴随α粒子相对监测1.0
    HPGe探测器效率刻度2.0
    特征γ射线峰计数0.7—0.9
    衰变数据1.0
    时间因子0.5
    修正因子1.0
    总不确定度3.4—3.5
    DownLoad: CSV
    Baidu
  • [1]

    Chadwick M B, Ignatyuk A V, Pashchenko A B, Vonach H, Young P G 1997 Fusion Eng. Des 37 79Google Scholar

    [2]

    Chadwick M B, Frankle S, Trellue H, Talou P, Kawano T, Young P G, MacFarlane R E, Wilkerson C W 2007 Nucl. Data Sheets 108 2716Google Scholar

    [3]

    Chadwick M B 2014 Nucl. Data Sheets 120 297Google Scholar

    [4]

    Qaim S M 1972 Nucl. Phys. A 185 614Google Scholar

    [5]

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H 1993 JAERI 1329 199310

    [6]

    Patronis N, Papadopoulos C T, Galanopoulsos S, Kokkoris M, Perdikakis G, Vlastou R, Lagoyanis A, Harissopulos S 2007 Phys. Rev. C 75 034607Google Scholar

    [7]

    Kalamara A, Vlastou R, Kokkoris M, Chasapoglou S, Stamatopoulos A, Patronis N, Serris M, Lagoyanis A and Harissopulos S 2018 Phys. Rev. C 98 034607Google Scholar

    [8]

    Bayhurst B P, Gilmore J S, Prestwood R J, Wilhelmy J B, Jarmie N, Erkkila B H, Hardekopf R A 1975 Phys. Rev. C 12 451

    [9]

    Herman M, Marcinkowski A, Stankiewic K 1984 Nucl. Phys. A 430 69Google Scholar

    [10]

    张锋, 孔祥忠, 蒲忠胜, 朱学彬 2002 高能物理与核物理 22 678

    Zhang F, Kong X Z, Pu Z S, Zhu X B 2002 High Energy Phys. Nucl. Phys. 22 678

    [11]

    Filatenkov A A, Chuvaev S V 2003 Khlopin Radiev. Inst. , Leningrad Reports. 259

    [12]

    Bormann M, Bissem H H, Magiera E, Warnemunde R 1970 Nucl. Phys. A 157 481Google Scholar

    [13]

    Singh B 2003 Nucl. Data Sheets 99 275Google Scholar

    [14]

    nudat2 Benjamin S, http://www.nndc.bnl.gov/ [2021-8-20]

    [15]

    Zolotarev K I 2010 INDC International Nuclear Data Committee. INDC(NDS)-0584

    [16]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng 169 188Google Scholar

    [17]

    Zhu C X, Wang J, Jiang L, Zheng P 2020 Chin. Phys. C 44 034001Google Scholar

    [18]

    Lewis V E, Zieba K J 1980 Nucl. Instrum. Method 174 141Google Scholar

    [19]

    朱传新 2006 中国核科技报告 第2集 CNIC-01866 CAEP-0178 1

    Zhu C X 2006 CNIC-01866 CAEP-0178 1 (in Chinese)

    [20]

    Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, Marck S V D, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018 Nucl. Data Sheets 148 1Google Scholar

    [21]

    Kellett M A, Bersillon O, Mills R W 2009 JEFF Report 20

Metrics
  • Abstract views:  5455
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2022
  • Accepted Date:  24 May 2022
  • Available Online:  27 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回
Baidu
map