搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碰撞能对H+CH+→C++H2反应立体动力学性质的影响

唐晓平 周灿华 和小虎 于东麒 杨阳

引用本文:
Citation:

碰撞能对H+CH+→C++H2反应立体动力学性质的影响

唐晓平, 周灿华, 和小虎, 于东麒, 杨阳

Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction

Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang
PDF
导出引用
  • 采用准经典轨线法计算H(2S)+CH+(X1Σ+)→C+(2P)+H2(X1ΣM=g+)反应在其基电子态势能面上的不同碰撞能时的反应截面和立体动力学性质.此外还计算了极化依赖的微分反应截面(2π/σ)(dσ00/dωt)和(2π/σ)(dσ20/dωt).结果表明该反应受到反应物碰撞能影响较大.
    The reactive cross section and stereodynamics at selected collision energies for the H(2S)+CH+(X1Σ+)→C+(2P)+H2(X1Σg+) reaction on a globally smooth ab initio potential surface of the 2A' state are calculated in detail by the quasi-classical trajectory(QCT) method. The calculated cross section decreases with the increase of the collision energy, which is found to be in overall good agreement with the previous time-dependent quantum results in the high collision energy regime (Ec>20 meV). The discrepancy between the QCT and previous quantum cross section below 20 meV can be attributed to the limitations of the classical trajectory method, because the QCT method cannot handle the effect of zero point energy. In general, QCT results show qualitative agreement with the quantum results, which confirmsthe validity of the QCT method. The research shows that the product rotational angular momentum vector is aligned and oriented. The alignment of the product rotational angular momentum vector j' depends very sensitively on the collision energy. With the increase of the collision energy, the alignment effect recedesin the low collision energy region (1500 meV), while it is enhanced in the high collision energy region (500-1000 meV). Moreover, the k-k'-j' distributions tend to be asymmetric with respect to the k-k' scattering plane (or about φr=180°), with two peaks appearing at φr=90° and φr=270°, respectively. This indicates that the product rotational angular momentum is not only in the Y-axis direction but also along the positive Y-axis direction. The peak intensity decreases with the collision energy increasing from 1 meV to 100 meV, while it increases with collision energy increasing from 100 meV to 1000 meV. Therefore the Y-axis orientation effect turns weak with the enhancement of the collision energy in the low energy region, while it becomes strong in the high energy region. In addition, the polarization dependent differential cross sections (PDDCSs) (2π/σ)(dσ00/dωt) and (2π/σ)(dσ20/dωt) are calculated. PDDCS (2π/σ)(dσ00/dωt) results indicate that the products have almost symmetrically scattered forward and backward, and the intensity of the scattering increases with the increase of the collision energy. The PDDCS (2π/σ)(dσ20/dωt) shows that the alignment effect of the rotational angular momentum of the products is stronger at the terminal of the scattering angle than at the other directions.
      通信作者: 和小虎, hxh@dicp.ac.cn;useeu@163.com ; 于东麒, hxh@dicp.ac.cn;useeu@163.com
    • 基金项目: 国家自然科学基金(批准号:21403226,21503226)资助的课题.
      Corresponding author: He Xiao-Hu, hxh@dicp.ac.cn;useeu@163.com ; Yu Dong-Qi, hxh@dicp.ac.cn;useeu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21403226, 21503226).
    [1]

    Langer W 1978 Astrophys. J. 225 860

    [2]

    Draine B T 1986 Astrophys. J. 310 408

    [3]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [4]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [5]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [6]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [7]

    Halvick P, Stoecklin T, Larrégaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [9]

    Gerlich D, Disch R, Scherbarth S 1987 J. Chem. Phys. 87 350

    [10]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [11]

    Herráez-Aguilar D, Jambrina P, Menéndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [12]

    Bonfanti M, Tantardini G F, Martinazzo R 2014 J. Chem. Phys. A 118 6595

    [13]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [14]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [15]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [16]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [17]

    Aoiz F, Brouard M, Enriquez P 1996 J. Chem. Phys. 105 4964

    [18]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [19]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [20]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese)[韩克利, 何国忠, 楼南泉1998化学 11 525]

    [21]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese)[孔浩, 刘新国, 许文武, 张庆刚2009物理化学学报25 935]

  • [1]

    Langer W 1978 Astrophys. J. 225 860

    [2]

    Draine B T 1986 Astrophys. J. 310 408

    [3]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [4]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [5]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [6]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [7]

    Halvick P, Stoecklin T, Larrégaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [9]

    Gerlich D, Disch R, Scherbarth S 1987 J. Chem. Phys. 87 350

    [10]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [11]

    Herráez-Aguilar D, Jambrina P, Menéndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [12]

    Bonfanti M, Tantardini G F, Martinazzo R 2014 J. Chem. Phys. A 118 6595

    [13]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [14]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [15]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [16]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [17]

    Aoiz F, Brouard M, Enriquez P 1996 J. Chem. Phys. 105 4964

    [18]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [19]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [20]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese)[韩克利, 何国忠, 楼南泉1998化学 11 525]

    [21]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese)[孔浩, 刘新国, 许文武, 张庆刚2009物理化学学报25 935]

  • [1] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究.  , 2022, 71(19): 192501. doi: 10.7498/aps.71.20220776
    [2] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响.  , 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [3] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质.  , 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响.  , 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [6] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响.  , 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [7] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究.  , 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [8] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究.  , 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [9] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质.  , 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [10] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究.  , 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [11] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [12] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究.  , 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [13] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学.  , 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [14] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [15] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究.  , 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [16] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响.  , 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学.  , 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [18] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究.  , 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量.  , 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
计量
  • 文章访问数:  5547
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-23
  • 修回日期:  2016-10-31
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map