-
The effect of reagent vibrational excitation on the stereodynamical properties of H(2S)+CH+(X1+)C+(2P)+H2(X1g+)reaction is investigated by quasi-classical trajectory method on a globally smooth ab initio potential surface of the 2A' state at a collision energy of 500 meV. The reaction probability and the reaction cross-section are also studied. In the calculation, the vibrational levels of the reactant molecules are taken as v = 0, 1, 3, 5 and j = 0, respectively, where v is the vibrational quantum number and j is the rotational quantum number. The calculation results show that the reaction probability reaches a maximum when v = 1, and then decreases with the vibrational quantum number increasing. The integral cross-section decreases sharply with the increase of vibrational quantum number. The potential distribution P(r), the dihedral angle distribution P(r), and the polarization-dependent generalized differential cross sections are calculated. P(r) represents the relation between the reagent relative velocity k and the product rotational angular momentum j'. P(r) describes the correlation of k-k'-j', in which k' is the product reagent relative velocity. The peak of P(r) is at r = 90 and symmetric with respect to 90, which shows that the product rotational angular momentum vector is strongly aligned along the direction perpendicular to the relative velocity direction. The peak of P(r) distribution becomes increasingly obvious with the increase of the rotational quantum number. The dihedral angle distribution P(r) tends to be asymmetric with respect to the k-k' scattering plane (or about r= 180), directly reflecting the strong polarization of the product angular momentum for the title reaction. Each curve has two evident peaks at about r = 90 and r = 270, but the two peak intensities are obviously different, which suggests that j' is not only aligned, but also strongly orientated along the Y-axis of the center-of-mass frame. The peak at r= 90 is apparently stronger than that at r = 270, which indicates that j' tends to be oriented along the positive direction of Y-axis. In order to validate more information, we also plot the angular momentum polarization in the forms of polar plots r and r. The distribution of P(r; r) is well consistent with the distribution P(r) and also the distribution P(r) of the products at different vibrational quantum states. In addition, the polarization-dependent differential cross section is quite sensitive to the reagent vibrational excitation. Based on the obtained results, we find that the observed excess of the methylidyne cation CH+ is closely related to the reactant of vibrational excitation in interstellar chemistry.
[1] Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084
[2] Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446
[3] Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314
[4] Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304
[5] Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80
[6] Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23
[7] Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582
[8] Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285
[9] Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800
[10] Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738
[11] Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60
[12] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483
[13] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[14] Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731
[15] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[16] Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201
[17] Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 66 023401]
[18] Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302
[19] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[20] Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75
[21] Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
[22] Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]
[23] Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]
[24] Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401
[25] Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149
[26] Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学 11 525]
-
[1] Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084
[2] Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446
[3] Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314
[4] Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304
[5] Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80
[6] Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23
[7] Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582
[8] Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285
[9] Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800
[10] Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738
[11] Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60
[12] Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483
[13] Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446
[14] Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731
[15] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463
[16] Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201
[17] Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 66 023401]
[18] Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302
[19] Liu S L, Shi Y 2011 Chin. Phys. B 20 013404
[20] Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75
[21] Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
[22] Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]
[23] Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]
[24] Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401
[25] Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149
[26] Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学 11 525]
Catalog
Metrics
- Abstract views: 5316
- PDF Downloads: 126
- Cited By: 0