-
We design two types of 8-fold quasi-period short groove structures which are arranged in single row and three rows respectively The flow field in the turbulent boundary layer and the total stress over these groove surfaces are numerically simulated by using Reynolds average Navier-Stokes equation and turbulence model. It is shown that the 8-fold quasi-periodic structure has good drag reduction effect compared with the periodic and disorder structures, especially for structure arranged in three rows. The results are also confirmed by the sheer stress measurements which are performed on substrates with the designed structures. By analyzing the distribution of flow field, we find that the quasi-periodic structure effectively inhibits the intensity of vortex, reduces the turbulent dissipation rate, and keeps the stripe phase stable. Furthermore, by using the two-dimensional grating model, it is found that the 8-fold quasi-periodic structure can reduce spectrum intensity in the large angle direction, revealing that the inhibition of the extension of coherence disturbance waves is responsible for the drag reduction effect, which is also confirmed by the flow field analysis.
-
Keywords:
- groove structure /
- vortex /
- strip phase /
- 8-fold quasi-period
[1] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486
[2] Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 55 6470]
[3] Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203
[4] Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 57 3260]
[5] Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683
[6] Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941
[7] Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936
[8] Dean B, Bhushan B 2012 Adv. Mech. 42 6
[9] Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204
[10] Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11
[11] Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]
[12] Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]
[13] Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412
[14] Choi K S 2000 Fluid Dyn. Res. 26 325
[15] Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90
[16] EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436
[17] Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267
[18] Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 44 204]
[19] Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 61 234701]
[20] Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103
[21] Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914
[22] Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280
[23] Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 62 054701]
[24] Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]
[25] Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 61 194702]
[26] Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414
[27] Jung C Y, Bhushan B 2010 J. Phys. 22 035104
[28] Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703
-
[1] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486
[2] Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 55 6470]
[3] Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203
[4] Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 57 3260]
[5] Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683
[6] Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941
[7] Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936
[8] Dean B, Bhushan B 2012 Adv. Mech. 42 6
[9] Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204
[10] Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11
[11] Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]
[12] Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]
[13] Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412
[14] Choi K S 2000 Fluid Dyn. Res. 26 325
[15] Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90
[16] EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436
[17] Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267
[18] Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 44 204]
[19] Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 61 234701]
[20] Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103
[21] Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914
[22] Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280
[23] Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 62 054701]
[24] Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]
[25] Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 61 194702]
[26] Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414
[27] Jung C Y, Bhushan B 2010 J. Phys. 22 035104
[28] Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703
Catalog
Metrics
- Abstract views: 6038
- PDF Downloads: 645
- Cited By: 0